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Abstract: As an extension of holography with flavour, we analyze in detail the embedding

of a D7-brane probe into the Polchinski-Strassler gravity background, in which the breaking

of conformal symmetry is induced by a 3-form flux G3. This corresponds to giving masses

to the adjoint chiral multiplets. We consider the N = 2 supersymmetric case in which one

of the adjoint chiral multiplets is kept massless while the masses of the other two are equal.

This setup requires a generalization of the known expressions for the backreaction of G3 in

the case of three equal masses to generic mass values. We work to second order in the masses

to obtain the embedding of D7-brane probes in the background. At this order, the 2-form

potentials corresponding to the background flux induce an 8-form potential which couples to

the worldvolume of the D7-branes. We show that the embeddings preserve an SU(2)×SU(2)

symmetry. We study possible embeddings both analytically in a particular approximation,

as well as numerically. The embeddings preserve supersymmetry, as we investigate using

the approach of holographic renormalization. The meson spectrum associated to one of the

embeddings found reflects the presence of the adjoint masses by displaying a mass gap.
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1. Introduction and summary

Over the last years, substantial progress has been made in the context of the AdS/CFT

correspondence [1] towards a gravity dual description of QCD-like theories, in particular

also for theories which involve fields in the fundamental representation of the gauge group,

i.e. quarks [2] - [4]. Quark fields in the fundamental representation can be introduced

for instance by adding D7-brane probes in addition to the D3-branes responsible for the

adjoint degrees of freedom. Moreover, supersymmetry can be broken further by turning

on additional background fields, i.e. by embedding the branes into less supersymmetric

backgrounds. For theories of this kind, holographic descriptions in particular of meson

spectra and decay constants [5, 6] chiral symmetry breaking by quark condensates [7] - [10]

and thermal phase transitions [11, 12] have been found, using a variety of brane construc-

tions in different supergravity backgrounds. In a number of examples, there is astonishing

agreement with experimental results. There have also been phenomenological ‘bottom-up’

approaches inspired by the string-theoretical results [13, 14]. Moreover from a more theoret-

ical point of view there have been embeddings of brane probes in the Klebanov-Strassler [15]

and Maldacena-Nuñez [16] backgrounds [17, 18], and progress towards holographic models

of flavour beyond the probe approximation has been made [19, 20].

All of these holographic models have been perfectioned in a number of respects. How-

ever, even if remaining in the supergravity approximation and in the probe limit, there

are still aspects which are desirable to improve. For instance, it is desirable to embed a

D7-brane probe into a gravity background with a well-controlled infrared behaviour in the

interior, which in addition returns to a well-controlled four-dimensional field theory in the

ultraviolet near the boundary. As we discuss in this paper, this is achieved by embedding

a D7-brane probe into the N = 2 version of the Polchinski-Strassler background [21]. The

field theory dual to this background is known as N = 2∗ theory and corresponds to giving

mass to the adjoint N = 2 hypermultiplet in the N = 4 theory.

Moreover, intrinsically the models considered for holography with flavour have only

one scale parameter, usually associated to the supergravity background, which sets the

scale of both supersymmetry breaking and conformal symmetry breaking.1 Generically the

observables calculated in these models are also of the order of magnitude of this same scale.

This is unsatisfactory from the phenomenological point of view, since the meson masses,

for instance, are known to be much smaller than the SUSY breaking scale. A possible

approach to separating the two scales (i.e. meson masses and SUSY breaking scale) may be

an appropriately adapted version of the Giddings-Kachru-Polchinski mechanism [22, 23] in

which scales are separated by fluxes. As a precursor to such a mechanism, in this paper we

study AdS/CFT with flavour in a supergravity background where the symmetry breaking

is generated by the 3-form flux G3. These are our two main motivations for embedding a

D7-brane probe into a suitable form of the Polchinski-Strassler background.

For embedding a D7-brane probe, it turns out that a sufficiently symmetric and thus

1Throughout this paper we remain in the supergravity approximation, such that the string tension α′−1

remains large. This paragraph merely refers to the fact that the holographic models yield e.g. meson masses

of the order of the SUSY breaking scale.
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tractable background is the N = 2 version where two of the adjoint chiral multiplet masses

are equal, while the third vanishes. We consider this background in an expansion in the

adjoint masses mp, p = 1, 2, 3 to second order. For the N = 1∗ case, such extensions have

been computed in [24] and to third order in [25], which lead to a dynamical formation of

a gaugino condensate. Here, we modify these results in order to obtain the N = 2∗ case

with m1 = 0, m2 = m3 = m.

To all orders in the adjoint masses, the corresponding supergravity solution has been

constructed in [26 – 28], however without explicit reference to the fluxes. Thus it is a slightly

different approach from the one considered here. On the field theory side, the theory

corresponding to this background flows to the Donagi-Witten integrable field theory [29]

in the infrared.

We discuss the structure of our order O(m2) metric in the deep interior of the space.

We find that two overlapping 2-spheres form whose radius is of order O(m). Denoting the

ten dimensions by xµ, µ = 0, . . . , 3 and yi, i = 4, . . . , 9, the two spheres form in the y5, y6, y7

and y7, y8, y9 directions, respectively. They give rise to an SU(2)× SU(2) symmetry of the

background, which is isomorphic to SO(4).

For the D7-brane embedding in the N = 2 version of Polchinski-Strassler, we find

that these symmetries are sufficient to ensure that the differential equation determining

the embedding is ordinary. This is achieved by embedding the D7-brane probe in the

y5, y6, y8, y9 directions which correspond to the adjoint matter with mass m in the N = 2∗

theory. The variable r given by r2 = ρ2 + (y4)2 + (y7)2 is then the direction perpendicular

to the boundary of the deformed AdS space, which may be interpreted as the energy scale.

The background generically breaks the U(1) symmetry in the y4, y7 plane perpendicular

to the D7-brane. We find that there are solutions for the embedding for which the angular

coordinate in this subspace is constant, such that y7 = 0 and y4 = y4(ρ). Another type

of solutions has y4 = 0 and y7 = y7(ρ). Since there is no background two-sphere in the

y4 directions, the embeddings of the form y4(ρ) are repelled by the singularity at r = 0.

By applying the methods of holographic renormalization, we confirm that these particular

embeddings preserve supersymmetry.

The other type of embedding solutions of the form y7 = y7(ρ) with y4 = 0 feel the

effect of the shell of polarized D3-branes forming the background. At small values of the

quark mass, they merge with the shell of polarized D3-branes in the deep interior of the

space. These embeddings are supersymmetric too.

Although both of the above embeddings have similar behaviour, the fields living on

their worldvolumes are different. The pullback of B induces source terms in the equations

of motion for F . Since F lives on the four-dimensional brane volume transverse to xµ,

the equations of motion derived from the combined Dirac-Born-Infeld and Chern-Simons

action only contain the primitive (1, 1) components of F . Thus, there must not appear

source terms for the (2, 0) and (0, 2) components. In other words, the field strength compo-

nents d(P [B]2,0 + P [B]0,2) along the D7-brane directions derived from the (2, 0) and (0, 2)

components of B must vanish. This is a constraint on the embedding. In the N = 2 case,

for our choices of the embedding, P [B](2,0) and P [B](0,2) vanish themselves and do not give

non-trivial constraints. In [30] the absence of the (2, 0) and (0, 2) components was found
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as a condition for supersymmetry to be preserved.

Finally, for the embedding of type y7 = y7(ρ), y4 = 0 we calculate the lowest-lying

radial meson mode by considering small fluctuations about the embedding. In the range

of parameters for which our order O(m2) approximation to the Polchinski-Strassler back-

ground is valid, we find that the meson mass satisfies M =
√

bm2 + cm2
q, with mq the

quark mass and b, c some constants. This behaviour coincides with expectations from field

theory: The offset b results from the presence of the adjoint hypermultiplet masses and

corresponds to a mass gap for the mesons.

In this paper we are mainly concerned with the technical aspects of embedding a D7-

brane in the Polchinski-Strassler background, and leave physical applications for the future.

Still, let us mention the interesting possibility of D-term supersymmetry breaking in the

dual field theory by switching on a non-commutative instanton on the D7-brane, along the

lines of [31, 32] (see also [33]). This may provide a gravity dual realization of metastable

SUSY vacua [34], complementary to [35]. The effect of commutative instantons on the

D7-brane in the AdS/CFT context was studied in [36, 11].

The outline of the paper is as follows. In section 2, we obtain the N = 2 background

to order O(m2) in the flux perturbation, adapting the N = 1∗ results of [24, 25]. Moreover

we discuss the structure of the metric in the deep interior of the space, which is helpful for

understanding the symmetries and the infrared behaviour of the embedding.

In section 3 we present the necessary Ramond-Ramond forms for the DBI analysis,

and in particular calculate the form C8.

In section 4 we perform the embedding by establishing the Dirac-Born-Infeld and

Chern-Simons actions, deriving the equations of motion for the embedding, and discussing

the solutions. Moreover we discuss the role of the gauge and B fields. By expanding

the embedding functions to second order in the adjoint masses, we find analytic solutions

for the embedding. We show that they are consistent with supersymmetry by applying

holographic renormalization.

In section 5 we present a numerical analysis of the embeddings. Moreover, as an

example for an associated meson mass, we calculate the meson mass obtained from small

radial fluctuations about the embedding y7 = y7(ρ), y4 = 0.

We conclude in section 6. A number of lengthy and involved calculations are relegated

to a series of appendices.

2. Polchinski-Strassler background to order m2

2.1 Metric

The metric of AdS5 × S5 in the Einstein frame reads (see appendix A for our notation and

conventions)

ds2 = Z− 1

2 ηµν dxµ dxν + Z
1

2 δij dyi dyj , (2.1)

Z(r) =
R4

r4
, r2 = yiyi , R4 = 4πgsNα′2 , (2.2)
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where µ, ν = 0, 1, 2, 3, i, j = 4, . . . , 9. The other fields of the background read simply

F0123i = e−φ̂ ∂iZ
−1 ,

τ̂ = Ĉ0 + i e−φ̂ = const. ,
(2.3)

where we put a ‘hat’ on C0, τ to denote the unperturbed AdS5 × S5 quantities. The

unperturbed dilaton φ̂ is related to the string coupling constant gs as eφ̂ = gs.

The 5-form field strength F5 follows from the 4-form potential C4 that reads

Ĉ0123 = Z−1 (2.4)

by taking the exterior derivative and then imposing the condition of self-duality.

On the field theory side, N = 4 supersymmetry is broken by adding mass terms for

the three adjoint chiral multiplets to the superpotential

∆W =
1

g2
YM

(m1 tr Φ2
1 + m2 tr Φ2

2 + m3 tr Φ2
3) , (2.5)

where g2
YM = 4πgs. For generic masses, the theory has N = 1 supersymmetry, while for

m1 = 0, m2 = m3 it has N = 2 supersymmetry.

As shown in [21], on the gravity side the perturbation by the relevant mass opera-

tors (2.5) corresponds to a non-trivial G3 flux, which is constructed from an imaginary

anti-self dual tensor T3, i.e. T3 fulfills

(?6 + i)T3 = 0 , (2.6)

where ?6 is the six-dimensional Hodge star in flat space. This condition ensures that T3

forms a 10 representation of the SO(6) isometry group of S5, and hence transforms in the

same way as the fermion mass matrix in the dual gauge theory. The tensor field G3 with

the necessary asymptotic behaviour to be dual to the mass perturbation is given by

G3 = e−φ̂ ζ

3
d(ZS2) , (2.7)

where ζ is a numerical constant (ζ = −3
√

2 in a proper normalization scheme [21] ). The

2-form potential S2 is constructed from the components of T3 as follows,

S2 =
1

2
Tijky

i dyj ∧ dyk . (2.8)

To present the explicit form of T3 it is advantageous to work in a basis of three complex

coordinates zp for the transverse space directions yi which is defined by

zp =
1√
2
(yp+3 + iyp+6) , p = 1, 2, 3 . (2.9)

The zp coordinates are dual to the three complex scalars φp of the chiral multiplets Φp.

In this basis, a constant anti-selfdual antisymmetric 3-tensor T3 for a diagonal mass

matrix with eigenvalues mp, p = 1, 2, 3 is given by

T3 = m1 dz1 ∧ dz̄2 ∧ dz̄3 + m2 dz̄1 ∧ dz2 ∧ dz̄3 + m3 dz̄1 ∧ dz̄2 ∧ dz3 . (2.10)
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In components the tensor T3 reads

Tpqr = Tp̄q̄r̄ = Tp̄qr = 0 , Tpq̄r̄ = εpqrmp . (2.11)

S2 is proportional to the potential of G3, which up to quadratic order in the mass pertur-

bation (where only the constant τ̂ enters the definition of G3) reads,

C2 − τ̂B = e−φ̂ ζ

3
ZS2 . (2.12)

The above given complex expression decomposes into real and imaginary part as

C̃2 = C2 − C0B = e−φ̂ ζ

3
Z Re S2 , B = −ζ

3
Z Im S2 . (2.13)

As shown in [21], the solution corresponding to the mass peturbation in the 10 obeys

Z−1(?6 − i)G3 = −i e−φ̂ 2ζ

9
dS2 . (2.14)

2.2 Backreactions

The unperturbed background is given by the AdS5 × S5 metric (2.1) with the 5-form field

strength and constant axion dilaton as in (2.3).

A non-vanishing mass perturbation parameterized by G3 starts at linear order in the

masses mp. At linear order in mp away from the D3-brane source the background is then

given by the unperturbed result, G3 itself and an induced 6-form potential. This potential

has to be included in an analysis of 5-brane probes, and its RR part C6, was determined

to be [21]

C6 =
2

3
B ∧ Ĉ4 . (2.15)

Beyond the linear approximation, at quadratic order in mp the corrections also affect

the metric, 4-form potential C4, and the complex dilation axion τ . Furthermore, we will

show that also an 8-form potential is induced, to which the D7-brane probe couples. The

deformations at quadratic order for the metric, C4 and τ have been computed in [24] with

an appropriate gauge choice. At this order, the deformed metric reads

ds2 = (Z− 1

2 + h0)ηµν dxµ dxν +
[

(5Z
1

2 + p)Iij + (Z
1

2 + q)
yiyj

r2
+ wWij

]

dyi dyj , (2.16)

where the tensors Iij and Wij are given by

Iij =
1

5

(

δij −
yiyj

r2

)

,

Wij =
1

|T3|2
Re(TipkT̄jpl)

ykyl

r2
− Iij , |T3|2 =

1

3!
TijkT̄ijk .

(2.17)

It is important to remark that our definition of |T3|2 deviates from the one in [24] by an

extra factor 1
3! , such that

|T3|2 = m2
1 + m2

2 + m2
3 = M2 . (2.18)
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The functions h,w, p, q are given by2

w = −ζ2M2R2

18
Z , p = −ζ2M2R2

48
Z , q =

ζ2M2R2

1296
Z , h0 =

7ζ2M2R2

1296
,

(2.19)

and according to [24] they satisfy

4h0Z = q − p . (2.20)

It is essential to note that the metric (2.16) has a curvature singularity at the origin, where

the Ricci scalar is given by

R = M2 5

2

R2

r2
. (2.21)

For completeness we also state the expression for the dilaton φ here [24]. It is deter-

mined by the equation of motion (A.14) for the complex dilaton-axion τ defined as the

combination in (2.3). As shown in appendix B, the correction to the dilaton obtained

from (A.14) can be factorized into a purely radial and a purely angular part according to

φ̃ = ϕY+. The explicit results taken from (B.34) and (B.36) then read3

ϕ =
ζ2M2R2

108
Z

1

2 ,

Y+ =
3

M2r2

(

m2m3(y
2
4 − y2

7) + m1m3(y
2
5 − y2

8) + m1m2(y
2
6 − y2

9)
)

.

(2.22)

2.3 Polarization of D3-branes

For discussing the symmetries of this metric and for finding suitable D7-brane embeddings,

it is essential to discuss the infrared behaviour of the metric (2.16). As has been found

by [37], a stack of Dp-branes couples to higher r-form potentials (r > p + 1) due to the

non-commutativity of their matrix-valued positions. This coupling has an interpretation

as a polarization of the Dp-brane, with its worldvolume becoming higher dimensional. In

the presence of potentials B and C̃2 which generate the non-vanishing 3-form flux G3, the

effective potential for the positions of the matrix-valued coordinates yi is minimized if4

[

yi,yj
]

= i2πα′cζ Im Tijk yk , (2.23)

c = −2
3 . The imaginary part of Tijk, i.e. B alone is therefore responsible for the polarization

at this order. Using the expressions for Tijk in the real coordinates given in (B.19), one

finds the concrete form of the polarizations.

2We note two misprints in [24]: Their eq. (125) to determine w is ill written, though the final result

matches; moreover their eq. (126) has an extra factor of 4 which contradicts their explicit results in eqs.

(71) and (143). With the latter two equations we coincide.
3[24] has the correct factor. [25] finds 18 times ϕ(r) instead.
4This relation is valid only if higher powers in B and C̃2 are suppressed, which according to the presence

of the warp factor Z in (2.13) seems not to be the case close to r = 0. However, one has to take into

account that due to the strong backreaction at small r, Z should be modified such that it does not become

singular [21].

– 7 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
9

S2

S2

B4

y8,y9

y7

y5,y6

S2

y5,y6,y8,y9

y7

y4

Figure 1: Directions of the polarization of the D3-branes in the N = 2 supersymmetric case

m1 = 0, m2 = m3 = m.

We first discuss the N = 2 supersymmetric case, where m1 = 0, m2 = m3 = m. The

only non-vanishing independent components are given by

T456 = iT789 = iT567 = T489 =
m√
2

. (2.24)

Inserting the non-vanishing imaginary parts into the equation for the embedding matrices

yi, gives rise to two su(2) Lie algebras in the y5, y6, y7 and y7, y8, y9 directions. That means

the D3-branes polarize into two S2, having in common the y7 direction. The equations for

the 2-spheres read

(y5)2 + (y6)2 + (y7)2 = r2
0 , (y7)2 + (y8)2 + (y9)2 = r2

0 , (2.25)

from which it follows

(y5)2 + (y6)2 + (y8)2 + (y9)2 = 2(r2
0 − (y7)2) = ρ2 . (2.26)

This equation defines a four-dimensional ball B4 in the subplane spanned by y5, y6, y8, y9

with radial coordinate ρ.

As shown in figure 1, the D3-branes are polarized into all their transverse directions

except of y4 with the same radius r0 = πα′|cζ|m
√

N2 − 1, spanning a four-dimensional

subspace. In the subplanes spanned by y5, y6, y7 (depicted in red) and y8, y9, y7 (depicted

in orange), the coordinates are noncommutative, while in the subplane y5, y6, y8, y9

(depicted in green) the two sets of coordinates commute. The volume into which the D3-

branes polarize is therefore a four-dimensional ball in the subplane y5, y6, y8, y9, where

different values of y7 correspond to different S3 orbits within the ball. This configuration

is symmetric under rotations of y5, y6, y8, y9 and hence should also lead to an embedding

of a D7-brane which is symmetric under these rotations, e.g. which does only depend on

the radial coordinate ρ. The D3-branes are also smeared out along these directions of the

D7-branes. Since the D3-branes are only polarized into the direction y7, this also means

that the rotational invariance in the y4, y7 plane is lost. This corresponds to the breaking

of the U(1) symmetry.
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S2

S2

B4

y8,y9

y7

y5,y6

Figure 2: Directions of the polarization of the D3-branes in the equal mass case m1 = m2 = m3 =

m.

For comparison let us also consider the N = 1∗ case where all adjoint chiral masses

are equal. Here, the tensor components of T3 in (B.19) become

T456 = iT789 =
3m

2
√

2
, iT459 = T678 = −iT468 = −T579 = iT567 = T489 =

m

2
√

2
. (2.27)

The D3-branes are also extended in the y4-direction. There are 2-spheres embedded in y4,

y5, y9. and in y4, y6, y8, and as in the N = 2 case in y5, y6, y7 and y7, y8, y9, While the

prior two have radius smaller by a factor 1
2 w.r.t. r0 in the N = 2 case discussed above, the

latter two have a radius bigger by a factor of 3
2 . Hence, the projection as discussed before

in the N = 2 case cannot longer be a simple B4. The equations for the spheres including

y4 read

(y4)2 + (y5)2 + (y9)2 =
r2
0

4
, (y4)2 + (y6)2 + (y8)2 =

r2
0

4
. (2.28)

The polarization into the subspace y4, y5, y6, y8, y9 then is similar to the one shown in

the first picture in figure (1), but with a radius which is smaller by a factor of 1
2 , and an

exchange e.g. of y6 and y9. As shown in figure 2 The situation is different for the two

2-spheres having in common y7. Their equations read

(y5)2 + (y6)2 + (y7)2 =
r2
0

4
, (y7)2 + (y8)2 + (y9)2 =

9r2
0

4
. (2.29)

They are of different sizes. The above equations induce the relation

(y5)2 + (y6)2 +
1

9
(y8)2 +

1

9
(y9)2 =

1

2
r2
0 −

10

9
(y7)2 . (2.30)

At y7 = 1
2r0 one has y5 = y6 = 0, and the equation becomes

(y8)2 + (y9)2 = 2r2
0 . (2.31)

At y7 = 0, one finds a rotational ellipsoid.

– 9 –
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x0 x1 x2 x3 y4 y5 y6 y7 y8 y9

D3 Pure AdS5 × S5

︸ ︷︷ ︸

SU(4)

⇓ + D7 probe

R
2 → U(1)

D3 Karch-Katz

D7

R
4 → SU(2) × SU(2)

Figure 3: Symmetries for a D7-brane probe in AdS5 × S5.

Although topologically one still has a ball B4, the difference in the length of the

principal axes breaks the rotational symmetries in the y5, y6, y8, y9 plane. Still, the

configuration is symmetric under rotations in the y5, y6 and y8, y9 planes, but it is no longer

symmetric under rotating these planes into each other. This breaking of the underlying

SU(2) × SU(2) symmetry into U(1) × U(1) prevents one from finding an embedding of a

D7-brane depending on the radial coordinate ρ in this plane only.

2.4 Symmetries and field theory action

We proceed by describing the D7-brane embedding and its symmetries. For compari-

son, we first recall the case of the undeformed AdS5 × S5 background [4, 5], in which

the embedding of a D7-brane probe along AdS5 × S3 with zero distance from the back-

ground generating D3-branes breaks the original SU(4) symmetry to SU(2)×SU(2)×U(1),

such that there is a remaining N = 2 supersymmetry.5 This scenario is displayed in fig-

ure 3. Let us now consider the symmetries of the Polchinski-Strassler background with

non-trivial G3 flux at order O(m2). For simplicity we consider the case in which m1 = 0

and m2 = m3 and, such that the background preserves N = 2 supersymmetry. As the dis-

cussion of section 2.3 shows (see equations (2.24) and (2.25) in particular), the background

preserves a global SU(2) × SU(2) symmetry in this case. The background preserves two

2-spheres which have one direction in common. As (2.26) shows, ρ is an invariant under

this SU(2) × SU(2) ' SO(4). It is thus convenient to embed the D7-brane probe into the

directions y5, y6, y8, y9. This embedding preserves the symmetries of the background. Note

that the background does not have any further U(1), which corresponds to the fact that

superconformal symmetry is broken by the adjoint hyper mass terms. This embedding is

displayed in figure 4. We denote the real directions 5, 6, 8, 9 along the D7-brane with indices

a, b, and the directions 4, 7 perpendicular to it with m,n. In the complex coordinates (2.9),

a, b = 2, 3 and m = 1.

5With a finite distance between the D3-branes and the D7-brane, also the U(1) symmetry is broken.
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x0 x1 x2 x3 y4 y5 y6 y7 y8 y9

dielectric D3s Polchinski-Strassler

D7 with D7 probe

SU(2) × SU(2)

Figure 4: Symmetries for a D7-brane probe in the N = 2 Polchinski-Strassler background.

These symmetries are consistent with the symmetries of the N = 2 field theory in which

the adjoint hypermultiplet is massive. The corresponding classical N = 2 Lagrangian is

L = Im

[

τ

∫

d2θ d2θ̄
(

tr(Φ̄Ie
V ΦIe

−V ) + Q†eV Q + Q̃eV Q̃†
)

+ τ

∫

d2θ
(

tr(WαWα) + W
)

+ τ

∫

d2θ̄
(

tr(W̄α̇W̄ α̇) + W̄
)

]

,

(2.32)

where the superpotential W is

W = tr
(

εpqrΦpΦqΦr + m(Φ2
2 + Φ2

3)
)

+ Q̃(mq + Φ1)Q . (2.33)

The superfields Q and Q̃ make up the N = 2 fundamental hypermultiplet. Following the

assignment of charges of [5, 14], we observe that this Lagrangian has an SU(2) × SU(2)R
symmetry, where the first SU(2) rotates the two complex scalars in each hypermultiplet

into each other. The mass terms explicitly break the U(1) symmetry of the SU(2) × U(1)

superconformal group. This applies already to the adjoint mass term before turning on the

fundamental fields, since the U(1) charges of Φ2, Φ3 are zero, whereas a superconformal

superpotential requires a U(1) charge of 2. Thus the field theory symmetries agree with

the supergravity symmetries.

3. Forms

3.1 Summary

We have calculated the contributions to the background fields necessary for the D7-brane

probe embedding at order O(m2). In particular the induced C8 form, which has not been

considered in the literature, is needed when adding D7-branes. Its computation is given

below in section 3.2.

To summarize, the background RR and NSNS forms read

C4 = e−φ̂

(

Z−1 +
ζ2M2R2

3423
Z− 1

2

)

dvol(
�1,3) +

1

2
B ∧ C2 , F5 = dC4 + ?dC4 , (3.1)

C̃2 = e−φ̂ ζ

3
Z<S2 , B = −ζ

3
Z=S2 , G3 = dC2 − τ dB ,

C6 =
2

3
B ∧ Ĉ4 , B6 =

2

3
C2 ∧ Ĉ4 , ?G3 = dC6 − τ dB6 ,

(3.2)

C8 = −1

6

(

e2φ̂ C̃2 ∧ C̃2 + B ∧ B
)

∧ Ĉ4 ,

(3.3)
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where Ĉ4 denotes the unperturbed 4-form potential given by the first term on the r.h.s. in

the equation for C4 above. The two types of corrections in C4 are of order O(m2). One of

them has components along the spacetime directions spanned by xµ, the other comes from

the redefinition of the 4-form (A.9) and has no components in these directions. It turns

out that only Ĉ4 is relevant for a D7-brane embedding up to order O(m2). We also note

that we can ignore the backreaction on G3 itself, since it would be of order O(m3).

3.2 The 8-form potential C8

We show that the backreaction of G3 on the background at order O(m2) induces a non-

vanishing 8-form potential C8 with field strength F̃9. This potential couples to the D7-brane

charge and hence has to be considered in an embedding of D7-branes in the Polchinski-

Strassler background.

The physical field strengths are defined in (A.7). They are not all independent but are

related to their corresponding Hodge duals according to (A.8). From these equations one

finds, after transforming to Einstein frame with (A.12), that the 8-form potential C8 obeys

the equation

dC8 = ?dC0 + dB ∧ C6 . (3.4)

It therefore depends on the non-constant corrections to C0 which start at order O(m2)

as well as on non-vanishing potentials B and C6. Taking the exterior derivative, thereby

using that the 6-form C6 satisfies

dC6 = − ? F̃3 + dB ∧ C4 , (3.5)

one finds

d2C8 = d?dC0 + H3 ∧ ?F̃3 . (3.6)

This expression should vanish identically due to the nilpotency of the exterior derivative.

Using the equation of motion for the axion found as the real part of (A.13) which up to

quadratic order in the mass perturbation is given by

d?dC0 =
eφ̂

2
Im(G3 ∧ ?G3) = eφ̂ Im G3 ∧ ?Re G3 = −H3 ∧ ?F̃3 , (3.7)

this vanishing is evident. The reversed sign in the relation F̃7 = − ? F̃3 of (A.8) is thereby

crucial for the consistency.

Inserting the expression for C6 (2.15) into (3.4) and then using (A.15) one finds that

C8 decomposes as

C8 = ω4 ∧ dvol(
�1,3) , (3.8)

where ω4 is a 4-form which has to be determined from the equation for the remaining

components transverse to the worldvolume of the D3-branes

dω4 = ?6 dC0 − e−φ̂ 2ζ

9
dB ∧ Im S2 = ?6 dC0 +

2ζ

9
Im G3 ∧ ImS2 . (3.9)
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The first term in (3.9) is found from the equation of motion for the complex dilaton-axion τ

which reads after using (A.15) and neglecting terms beyond quadratic order in the masses

d?6 dC0 = − ζ

18
(G3 ∧ dS2 + Ḡ3 ∧ dS̄2) . (3.10)

To find the r.h.s. we have also used the identity

Z−1(G3 ∧ ?6G3 − Ḡ3 ∧ ?6Ḡ3) = G3 ∧ Z−1(?6 − i)G3 − Ḡ3 ∧ Z−1(?6 + i)Ḡ3 (3.11)

together with (2.14) and with (2.7). Considering the Bianchi identity dG3 = 0 this equation

can be integrated easily and becomes

?6 dC0 =
ζ

9
Re(G3 ∧ S2) . (3.12)

Inserting this result, the equation (3.9) for ω4 then assumes the form

dω4 =
ζ

9
Re(G3 ∧ S̄2) = e−φ̂ ζ2

27
Re(d(ZS2) ∧ S̄2) . (3.13)

After some elementary manipulations the Bianchi identity d2ω4 = 0 becomes

d(dZ ∧ S2 ∧ S̄2) = 0 . (3.14)

Therefore dZ ∧ S2 ∧ S̄2 must follow from a 4-form potential. The equation of motion (3.9)

can be transformed to

dω4 = e−φ̂ ζ2

54

(

dZ ∧ S2 ∧ S̄2 + d(ZS2 ∧ S̄2)
)

. (3.15)

The Bianchi identity (3.14) thereby ensures that a potential for the first term and hence a

4-form ω4 must exist. As shown in appendix C, the first term in (3.15) can be rewritten as

dZ ∧ S2 ∧ S̄2 = −2 d(ZS2 ∧ S̄2) . (3.16)

Using also the reexpression of S2 in terms of B and C̃2 (2.13), the 4-form potential therefore

reads

ω4 = − e−φ̂ ζ2

54
ZS2 ∧ S̄2 = −e−φ̂

6
Z−1(e2φ̂ C̃2 ∧ C̃2 + B ∧ B) , (3.17)

and together with (3.8) it determines C8. Using the expression for Ĉ4 (2.4), one then finds

C8 = −1

6
(e2φ̂ C̃2 ∧ C̃2 + B ∧ B) ∧ Ĉ4 . (3.18)

4. D7-brane action

With these ingredients we are now able to calculate the action for the probe D7-brane in

this background, which we present below. Moreover we derive the equation of motion from

this action and discuss possible solutions for the brane embedding.
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4.1 The action

The action for a D7-brane in the Einstein frame is given by

S = SDBI + SCS , (4.1)

SDBI = − T7

e2φ̂

∫

d8ξ eφ

√

∣

∣ detP
[

g − e−
φ−φ̂

2 B
]

+ 2πα′ e−
φ−φ̂

2 F
∣

∣ , (4.2)

SCS = −µ7

∫ 4
∑

r=1

P
[

C2r ∧ e−B
]

∧ e2πα′F , (4.3)

where T7 = µ7. We use the conventions of [21], in which the transformation between the

Einstein and string frame metric contains just the non-constant part φ − φ̂ of the dilaton

φ, where eφ̂ = gs is the string coupling constant. See appendix A for details.

In static gauge, the pullback of a generic 2-tensor E is defined by

P [E]ab = Eab + ∂aX
mEmb + ∂bX

nEan + ∂aX
m∂bX

nEmn . (4.4)

Note the minus sign in (4.3). In principle for the AdS5 × S5 background, there is

a convention choice here corresponding to the sign choice in the projector ε = ±Γε for

the supersymmetries preserved by the brane. However in the N = 2 Polchinski-Strassler

background, there remains only one choice consistent with the supersymmetries of the

background. The correct choice corresponds to the minus sign in (4.3). This is also in

agreement with [3, 38, 30].6

Using the explicit expression for the induced forms C6 and C8 as in (2.15) (3.18), the

Chern-Simons part at order O(m2) reduces to (P [F ] = F )

SCS = −µ7

∫

P

[

Ĉ4 ∧
(

− 1

3
B ∧ (B + 2πα′F ) + 2π2α′2F ∧ F − 1

6
e2φ̂ C̃2 ∧ C̃2

)]

.

(4.5)

We now expand to quadratic order in the mass perturbation around the unperturbed

metric (2.1). For the total D7-brane action we find in appendix D

S = −T7

eφ̂

∫

d8ξ
√

detP [δ]ab

[

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 P [δ]abP [g̃]ab

+
1

2
Z−1

((

1 − 2

3
?4

)

P [B] · P [B]

−4πα′

(

1 +
1

3
?4

)

F · P [B]

+4π2α′2(1 + ?4)F · F

−1

3
e2φ̂ P [C̃2] · ?4P [C̃2]

)]

(4.6)

6We are grateful to Andreas Karch for pointing this out to us. Compare also with the sign choice

in [17]. In principle this can be checked using kappa symmetry, an involved calculation which we leave for

a forthcoming publication. See also [39 – 41].
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where throughout the paper with a ‘tilde’ we denote the order O(m2) corrections7 to the

unperturbed quantities which carry a ‘hat’. We should stress that here the four-dimensional

inner product · as well as the Hodge star ?4 are understood to be computed with the

pullback metric according to (A.16) and (A.17), respectively.

We are going to discuss the equation of motion derived from this action in detail

below. However first let us mention why we can neglect the backreaction of the D7-brane

on the background. First, as in all probe approximations within AdS/CFT, we have a

large number N of background generating D3-branes compared to only a single D7-brane.

In the limit N → ∞, gsN = fixed, the backreaction on the unperturbed AdS5 × S5 part

is negligible. It is of order gsNf, where Nf is a fixed number of D7-branes [4]. However

for the Polchinski-Strassler background, we also have to be sure that the backreaction on

the perturbation parameterized by G3 is negligible. Otherwise, we would have to consider

its effect in the equations of motion from the type II B supergravity action SII B before

determining G3 and the correction of the background. In other words, the backreaction

of the D7-brane must not be of the same order as the perturbation of the background by

G3. We see that this is indeed the case: Since SII B ∼ e−2φ̂ whereas S ∼ e−φ̂, the D7-brane

contributes to the background equations of motion at relative order gs.

4.2 Gauge field sources

The action (4.6) contains a linear coupling of the gauge field F to the NSNS field B,

generating a source term in the equation of motion for F . Since the corresponding F is

proportional to 1
2πα′ , it cannot be neglected in the analysis.8 The equation of motion for

F reads

d

(

Ĉ4 ∧
(

2πα′(?4 + 1)F −
(

?4 +
1

3

)

P [B]

))

= 0 . (4.7)

Integrating the above equation, and decomposing it with (B.16) into its components purely

along (anti-)holomorphic directions and along mixed directions, one finds

2Z−1

(

2πα′FP
(1,1) −

2

3
P [B](1,1)

)

= ω(1,1) , −2

3
Z−1P [B](2,0) = ω(2,0) , (4.8)

where we have omitted to indicate with an index P also the primitive part of P [B](1,1)

since it is primitive anyway. The 2-form ω2 is closed. A separation of this condition into

its individual components leads to the equations

∂ω(2,0) = 0 , ∂̄ω(2,0) + ∂ω(1,1) = 0 , (4.9)

where ∂ and ∂̄ is the holomorphic and the antiholomorphic part of the exterior derivative

operator d. The first equation is trivially satisfied, since the subspace on which the above

forms are defined is only four-dimensional. From the second equation one derives

∂

(

Z−1

(

2πα′FP
(1,1) −

2

3
P [B](1,1)

))

=
1

3
∂̄
(

Z−1P [B](2,0)

)

. (4.10)

7By notational abuse, this does not apply to C̃2 and the redefined field strengths F̃r.
8We thank Rob Myers for bringing this fact to our attention.
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The above equation is part of the full equation of motion, which reads

∂

(

4πα′Z−1FP
(1,1) +

ζ

9

(

4P [Im S2](1,1) − i∂̄ϕ

))

+ ∂̄

(

4πα′Z−1FP
(1,1) +

ζ

9

(

4P [Im S2](1,1) + i∂ϕ̄

))

− ζ

9
(∂ + ∂̄)

(

2P [Im S2](2,0) + 2P [Im S2](0,2) + i(∂ϕ − ∂̄ϕ̄)

)

= 0 .

(4.11)

We have extended the above equation by introducing a 1-form ϕ with only holomorphic

components, which in total does not give any contribution. The reason for this procedure

will become clear below.

Without a priori knowledge of the embedding it seems to be impossible to integrate

the above equation without further input or assumptions. The reason for this is the non-

vanishing of the last term in the above equation. It is present because the coefficients in the

linear combination with ?4 acting on P [B] in the equation or motion (4.7) do not coincide

with the ones in front of F . This term would be absent if also a projector 1 + ?4 acted on

P [B]. One can easily integrate the equation of motion under the assumption that the last

term above is vanishing, e.g.

(∂ + ∂̄)

(

P [Im S2](2,0) + P [Im S2](2,0) +
i

2
(∂ϕ − ∂̄ϕ̄)

)

= 0 . (4.12)

In this case a solution for F is immediately found as

4πα′Z−1F = −ζ

9
(2(1 + ?4)P [Im S2] − i(∂̄ϕ − ∂ϕ̄)) + dA0 , (4.13)

where we have introduced an exact form dA0 which is a solution of the vacuum equations

of motion for F .

In appendix B we show that the pullback of the imaginary part of S2 decomposes as

P [Im S2](2,0) = 3 Im S
‖
(2,0) −

i

2
∂θ ,

P [Im S2](1,1) = 3 Im S
‖
(1,1) −

i

2
(∂̄θ − ∂θ̄) ,

P [Im S2](0,2) = 3 Im S
‖
(0,2) +

i

2
∂̄θ̄ ,

(4.14)

where with ‖ we indicate the components along the directions of the D7-brane explicitly

given in (B.23). Furthermore, θ is a 1-form defined by

θ = θ(1,0) = (T̄mābz̄
azm + T̄m̄abz

az̄m − Tm̄ābz̄
az̄m) dzb . (4.15)

The components of the condition (4.12) can be separated, and one uses the first of the

above relations (4.14) to obtain

∂̄

(

P [Im S2](2,0) +
i

2
∂ϕ

)

= ∂̄

(

3 Im S
‖
(2,0) −

i

2
∂(θ − ϕ)

)

= 0 . (4.16)
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The first term in the above equation explicitly reads with the definition of S2 in (2.8) in

the complex basis

ImS
‖
(2,0) =

i

4
T̄m̄abz̄

m dza ∧ dzb = 0 . (4.17)

It vanishes since it is proportional to m1 = 0. The condition (4.16) is then easily satisfied

for an appropriately chosen ϕ, e.g. given by

ϕ = θ + ∂h . (4.18)

We have introduced a function h whose holomorphic derivative is part of the homogeneous

solution.9 Inserting the result for ϕ, the solution for F (4.13) hence becomes

4πα′Z−1F = −ζ

9
(2(1 + ?4)P [Im S2] − i(∂θ̄ − ∂̄θ)) + dA0 . (4.19)

One then uses the second relation in (4.14) to eliminate the θ-dependent terms. The result

for F then reads

4πα′Z−1F = −ζ

3
(1 + ?4)(P [Im S2] − Im S

‖
2)) + dA0 . (4.20)

Using the relation (2.13) to reexpress the imaginary parts of S2 in terms of B, one finally

finds

2πα′F =
1

2
(1 + ?4)(P [B] − B‖) +

Z

2
dA0 . (4.21)

It is worth to remark that by using the expression for the pullback in static gauge, the

linear combination keeps only the derivative terms of the embedding coordinates that come

from the pullback. This is a particularity for the coefficients in the linear combination with

?4 in front of P [B] in the equation of motion (4.7).

4.3 Expansion of the embedding

At sufficient distance from the polarized brane source, the Polchinski-Strassler background

is given by AdS5 × S5 with corrections at quadratic order in the mass perturbation. One

can therefore expand the full embedding coordinates Xm ≡ ym, m = 4, 7 into a known un-

perturbed part X̂m, which is the constant embedding in AdS5×S5 and into a perturbation

X̃m, i.e.

Xm = X̂m + X̃m . (4.22)

This decomposition is inserted into the complete action. Then one expands in powers of

X̃m, thereby including all corrections to the background such that the resulting equations

of motion contain all terms up to quadratic order in the mass perturbation. This yields

differential equations for X̃m. In the case of the N = 2 embedding to be discussed below,

it becomes an ordinary differential equation of second order that can be solved analyti-

cally. However, the solution found in this way is accurate only in a regime where the bare

embedding coordinates dominate the correction, i.e. where X̂m & X̃m.

9A corresponding antiholomorphic derivative of a function has not been considered, since we want to

keep ϕ a 1-form in only holomorphic directions.
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Inserting (4.22) and the corresponding decompositions for all background fields, as

well as the expressions (2.15) and (3.18) for the induced C6 and C8, one finds that for a

constant unperturbed embedding the action (4.6) becomes up to quadratic order in the

perturbation

S = −T7

eφ̂

∫

d8ξ

[

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 g̃aa +
1

2
(∂aX̃

m)2 + Z− 1

2 ∂aX̃
mg̃ma

+
1

2
Z−1

((

1 − 2

3
?4

)

B · (B + 4∂X̃B)

− 4πα′

(

1 +
1

3
?4

)

F ·
(

B + 2∂X̃B
)

+ 4π2α′2(1 + ?4)F · F

− 1

3
e2φ̂ ?4C̃ ·

(

C̃ + 4∂X̃C̃
)

)]

.

(4.23)

Since the action at this order does not include terms that depend on the mass perturba-

tion and include the perturbation X̃m at quadratic order, the Hodge star and the inner

product as defined in (A.1), (A.5) become the ordinary ones in flat space for the constant

unperturbed embedding. It is also important to remark that in the above expansion terms

that are quadratic in the mass perturbation but in addition linear in the perturbation of

the embedding X̃m have been kept. This ensures that in the equations of motion for the

fluctuations all terms that are quadratic in the perturbation do appear.

In the above equation we have used the abbreviations

(∂X̃B)ab = ∂aX̃
mBmb , (B∂X̃)ab = ∂bX̃

mBam . (4.24)

They are also of use for an expansion of the expression (4.21) for the gauge field strength

F , which becomes

2πα′F =
1

2
(1 + ?4)(∂X̃B + B∂X̃) , (4.25)

and in which we have neglected A0 that does not contribute to the source terms. The

previously mentioned dependence of F only on derivative terms of the embedding is now

obvious. Since F is thus of linear order in the mass perturbation and in the corrections to

the embedding, one can directly neglect all terms quadratic in F as well as all terms that

contain F and additional dependence of linear order in X̃ . The action thus becomes

S = −T7

eφ̂

∫

d8ξ

[

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 g̃aa +
1

2
(∂aX̃

m)2 + Z− 1

2 ∂aX̃
mg̃ma

+
1

2
Z−1

((

1 − 2

3
?4

)

B · B +
4

3
(1 − 4?4)B · ∂X̃B

− 1

3
e2φ̂ ?4C̃ ·

(

C̃ + 4∂X̃C̃
)

)]

,

(4.26)

where we have also made use of the fact that ?2
4 = 1.

To present the equations of motion, it is advantageous to transform to polar coordi-

nates. The two directions transverse to the D7-brane become

X4 = u cos ψ = û cos ψ̂ − ûψ̃ sin ψ̂ + ũ cos ψ̂ ,

X7 = u sin ψ = û sin ψ̂ + ûψ̃ cos ψ̂ + ũ sin ψ̂ ,
(4.27)
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AdS5 × S5 + corr.

X = X̂ + X̃(ρ)

ρ0

ρ

u

r0

Figure 5: The two radial directions ρ and u in the six-dimensional space perpendicular to xµ. In

the grayscaled region, the perturbative treatment of the backreaction around AdS5 × S5 is valid.

In the hatched region, the expansion of the embedding Xm into the constant embedding X̂ plus a

small ρ-dependent correction is valid. For regular embeddings the decomposition is valid also for

ρ < ρ0, provided r ≥ mR2. At radii smaller than r0 ∼ mR2, the backreaction becomes strong, and

the background cannot be described by AdS5 × S5 plus corrections.

where in the final expressions we have expanded up to linear order in the perturbations ũ

and ψ̃ of the radius and angular dependence, respectively.

As shown in appendix E, the equations of motions assume the form

1

ρ3
∂ρ(ρ

3∂ρf(ρ)) = g(ρ) , g(ρ) =
û

r̂4

(

Bf +
û2

r̂2
Cf

)

, r̂2 = r̂2(ρ) = ρ2 + û2 , (4.28)

where f = u or f = ψ and Bf and Cf are constants that depend on the unperturbed

embedding coordinates û, ψ̂ and which are of quadratic order in the mass perturbation.

We should remark that without the inhomogenity, i.e. Bf = Cf = 0, the above equation is

the one found for the embedding of D7-branes in pure AdS5 × S5 at large r. Furthermore,

the constant embedding û = 0 therefore remains a solution also in presence of the mass

perturbation. Note that û is identified with the quark mass by virtue of û = 2πα′mq.

We discuss the case û 6= 0. For f = u the constants B and C read

Bu =
ζ2m2R4

54
(−4 + cos 2ψ̂) , Cu =

ζ2m2R4

81
(−10 + 3 cos 2ψ̂) . (4.29)

For f = ψ one has to identify

Bψ = −ζ2m2R4

54û
sin 2ψ̂ , Cψ = −2ζ2m2R4

27û
sin 2ψ̂ . (4.30)

The full solution of the differential equation (4.28) reads

f(ρ) = f̂ +
1

8ρ2

(

Cf
û3

r2
+ 2(4Af − Bf û) − 2Bf û ln r̂2

)

, (4.31)

where f̂ is the unperturbed value of f which is the value of f at the boundary at ρ → ∞.

Af is an integration constant that has to be fixed by the condition that the solution does

not become singular at ρ = 0. In the unperturbed AdS5 × S5 case one would have to set

Af = 0. Here, in contrast, we have to allow Af 6= 0 to find a non-singular embedding.
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For an embedding that becomes singular at ρ = 0 the decomposition in (4.22) used

to expand the action and equations of motion is only justified for ρ & mR2, for which

X̂m & X̃m holds. As shown in figure 5, this means a more restrictive constraint than the

condition under which the Polchinski-Strassler background is given by an expansion around

the AdS5 × S5 background, requiring only that r & mR2. For the embedding regular at

ρ = 0, however, there is no restriction on ρ. We only have to take care that it does not

enter the regime where the perturbative description of the background breaks down. We

will see that the D7-branes avoid to enter the region of small r. For the expansion (4.22)

we only have to keep in mind that it is a good approximation only when X̂m & mR2 such

that the corrections X̃m are small.

In the following we determine Af to cancel the divergence at ρ → 0 which leads to the

regular solution. We find in the limit ρ2 ¿ u2

f(ρ) ∼ f̂ − Cf

8û
− Bf

4û
+

1

8ρ2

(

8Af − 2Bf û(1 + ln û2) + Cf û
)

. (4.32)

From this expansion it follows that there exist non-singular solutions in the special case

8Af − 2Bf û(1 + ln û2) + Cf û = 0 . (4.33)

In this case the full solution, which is regular on 0 ≤ ρ < ∞, reads

f(ρ) = f̂ − Cf
û

8r̂2
− Bf

û

4ρ2
ln

r̂2

û2
. (4.34)

It has the asymptotic behaviour

ρ → 0 : f(ρ) ∼ f̂ − 1

8û
(2Bf + Cf ) ,

ρ → ∞ : f(ρ) ∼ f̂ − Bf

û

4ρ2
ln ρ2 − û

8ρ2

(

Cf − 2Bf ln û2
)

.
(4.35)

Considering the values Bψ and Cψ which determine the angular dependence of the solution,

no ρ dependent perturbation is found for the unperturbed embedding with ψ̂ = 0, where

u = X4, or ψ̂ = π
2 , where u = X7. According to figure 1, y7 is the only direction into which

the D3-branes polarize and which is not parallel to the directions of the D7-brane. The two

choices ψ̂ = 0 and ψ̂ = π
2 are singled out, since the polarization direction is respectively

perpendicular or along the direction of the separation of the two types of branes.

4.4 Holographic renormalization

The embedding solutions we have derived in the previous section are not constant. We

may therefore wonder if their boundary behaviour for ρ → ∞ might imply the presence

of a VEV for the fermion bilinear which would violate supersymmetry. In this section we

show that such a fermion condensate is absent. For this, suitable finite counterterms have

to be added to the action, such that it vanishes when evaluated on a solution, as required

by supersymmetry. According to [42, 43], this addition of counterterms corresponds to a

change of renormalization scheme. If we were able to find the canonical coordinates for our
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background, i.e. those in which the kinetic term is canonically normalized in presence of

the order O(m2) corrections, an addition of finite counterterms would not be necessary.10

The holographic renormalization of the expanded D7-brane action (4.23) or corre-

spondingly (4.26) is best performed in the coordinate system introduced in [42]. These are

essentially Poincaré coordinates in which the AdS5 metric (2.1) is given by

ds2 =
1

R2χ
ηµν dxµ dxν +

R2

4χ
dχ . (4.36)

The only replacement to be done is a redefinition of the holographic direction. Instead of

ρ one chooses

r =
1√
χ

,
ρdρ

r
= − dχ

2
√

χ3 , ρdρ = − dχ

2χ2
, ∂ρ = −2ρχ2∂χ . (4.37)

In the special case m1 = 0, m2 = m3 = m the action in the new coordinates is derived

in appendix F. Keeping all terms up to order O(m2) in the on-shell action (F.11), the

regularized action is found to be given by

Sreg = − T7

2 eφ̂
Ω3

∫

dξ4

[

− 1

2χ̂2
+

û2

χ̂
− ζ2m2R4

108

(

5

3χ̂
−

(

c0 −
5

3

)

û2 ln χ̂ + c0χ̂û4

)]
1

û2

ε

= − T7

2 eφ̂
Ω3

∫

dξ4

[

û4

2
+

1

2ε2
− û2

ε

− ζ2m2R4

108

((

c0 +
5

3

)

û2 − 5

3ε
+

(

c0 −
5

3

)

û2 ln εû2 − c0εû
4

)]

,

(4.38)

where the constants found for both types of embeddings are defined in (F.3). Here we have

used that the original integration interval 0 ≤ ρ < ∞ in the new variable χ̂ = 1
r̂2 translates

to 1
û2 ≥ χ̂ ≥ 0.

According to holographic renormalization, we have to replace the boundary data û at

the position of the true boundary at χ̂ = 0 by the data on the regulator hypersurface at

χ̂ = ε. To this purpose we have to evaluate the solution (F.8) at χ̂ = ε and invert it,

making use of an expansion for small ε. Denoting the value of the field at the location of

the regulator hypersurface by uε, one finds in this way

û = uε +
ζ2m2R4

216
εuε

(

c2

2
− c3 +

c1

1 − εû2
ln εu2

ε

)

. (4.39)

Concretely, one needs the following expressions

û4

2
=

u4
ε

2
+

ζ2m2R4

108
εu4

ε

(

c2

2
− c3 + c1 ln εu2

ε

)

,

û2

ε
=

u2
ε

ε
+

ζ2m2R4

108
u2

ε

(

c2

2
− c3 + c1(1 + εu2

ε ) ln εu2
ε

)

,

(4.40)

10See also the discussion in [46], where the embedding functions become flat for a suitable coordinate

choice.
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which give non-divergent contributions that do not depend on ε. Inserting them into the

action, up to order O(ε) and O(m2) the regularized action becomes

Sreg = − T7

2 eφ̂
Ω3

∫

dξ4

[

u4
ε

2
+

1

2ε2
− u2

ε

ε

− ζ2m2R4

108

((

c0 +
c2

2
− c3 +

5

3

)

u2
ε −

5

3ε

+

(

c0 + c1 −
5

3

)

u2
ε ln εu2

ε −
(

c0 +
c2

2
− c3

)

εu4
ε

)]

.

(4.41)

Each set of constants c0, . . . , c3 defined in (F.3) for the two embeddings with constant

angles fulfill c0 +c1− 5
3 = 0. Hence, the logarithmic term in the above expression is absent.

The counterterm action is defined as the negative of all terms in the above result which

diverge in the limit ε → 0. It hence reads

Sct =
T7

2 eφ̂
Ω3

∫

dξ4

[

1

2ε2
− u2

ε

ε
+

ζ2m2R4

108

5

3ε

]

. (4.42)

The subtracted action is given by the sum of the regularized action and the counterterm

action. Up to linear order in ε it thus becomes

Ssub = − T7

2 eφ̂
Ω3

∫

dξ4

[

u4
ε

2
− ζ2m2R4

108

((

c0 +
c2

2
− c3 +

5

3

)

u2
ε −

(

c0 +
c2

2
− c3

)

εu4
ε

)]

.

(4.43)

Interestingly, for the two embeddings with constant angles the above combination of the

constants defined in (F.3) is universal and given by c0 + c2
2 − c3 = −11

3 . The value of the

subtracted action hence is equal for both types of embeddings. It vanishes if we include

finite counterterms into the counterterm action (4.42) which then reads

Sct =
T7

2 eφ̂
Ω3

∫

dξ4

[

1

2ε2
− u2

ε

ε
+

u4
ε

2
+

ζ2m2R4

108

(

5

3ε
+ 2u2

ε

)]

. (4.44)

We then find Ssub = Sreg + Sct = 0 in agreement with supersymmetry, and hence the

vanishing of the quark condensate. Besides the finite counterterm already found in [43], we

also have to add a finite counterterm proportional to m2uε
2. This finite term in Sct is the

same for both types of embeddings considered. This seems to confirm that there should

exist a canonical coordinate system in which it is not necessary to add a finite counterterm

in order to obtain Ssub = 0.

5. Full embedding and meson masses

We now move beyond the expansion (4.22) for the embedding an study the resulting em-

beddings numerically. Our results reflect the anisotropy of the background. As discussed in

section 2.3, this anisotropy is due to the fact that the shell of polarized D3-branes extends

into the y7 but not into the y4 direction.
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For moving beyond the expansion (4.22) for the embedding, we compute the D7-brane

action (4.2) plus (4.5),

S = − T7

e2φ̂

∫

d8ξ eφ

√

∣

∣det
(

P [g − e−
φ−φ̂

2 B] + 2πα′ e−
φ−φ̂

2 F
)∣

∣

− µ7

∫

P

[

Ĉ4 ∧
(

− 1

3
B ∧ (B + 2πα′F ) + 2π2α′2F ∧ F − 1

6
e2φ̂ C̃2 ∧ C̃2

)] (5.1)

in the background (2.16), (3.1), (2.13), (B.36), (B.34), (4.21) evaluated with m1 = 0,

m2 = m3, m1 = 0 for a generic embedding along both y4(ρ) and y7(ρ). We then solve

the resulting equations of motion numerically and discuss the two embeddings y4 = y4(ρ),

y7 = 0 and y7 = y7(ρ), y4 = 0, respectively.

The action (4.6) in polar coordinates becomes with r2 = ρ2 + y2
4 + y2

7

S = −T7

eφ̂

∫

d4ξ dΩ3 dρ
[

ρ3
√

1 + y′24 + y′27 (5.2)

+
ρ3m2R4

36r4
√

1 + y′24 + y′27

(

ρ2(10 + 5y′24 + 17y′27 ) + 2ρ(5y4y
′
4 − y7y

′
7)

+ y2
4(14 + 19y′24 + 23y′27 ) + y2

7(14 + 5y′24 + y′27 ) − 8y′4y
′
7y4y7

+ 12
√

1 + y′24 + y′27 (−y2
4 − 2y2

7 + ρ(y4y
′
4 + 4y7y

′
7))

)]

.

5.1 y4 embedding

The equations of motion for y4 and y7 arising from the action (5.2) allow for solutions of

the form y4 = f(ρ), y7 = 0 as well as y4 = 0, y7 = f(ρ).

As discussed in subsection 4.2, the pullback of B to the D7-brane worldvolume vanishes

for the embedding y4 = y(ρ), y7 = 0, r2 = ρ2 + y2. In this case we have for (5.1)

S = −T7

eφ̂

∫

d4ξ dΩ3 dρ
[

ρ3
√

1 + y′2

+
ρ3m2R4

36r4
√

1 + y′2

(

10ρ2 + 14y2 + 5ρ2y′2 + 19y2y′2 + 10ρyy′

− 12
√

1 + y′2(y2 − ρyy′)
)]

.

(5.3)

Solving the corresponding equation of motion for y4 numerically, we obtain the embeddings

shown in figure 6. The quark mass mq is identified with the boundary value ŷ4 of the

embedding coordinate y4 by virtue of ŷ4 = y4(ρ → ∞) = 2πα′mq. For simplicity we

choose R = 1 in the following such that all coordinates are dimensionless, given in units

of R. First of all we observe in figure 6 that although our order O(m2) approximation to

the full Polchinski-Strassler background breaks down at r ∼ mR2 = 0.2, the embeddings

remain physical within the metric given beyond this value, since they display monotonic

behaviour in r =
√

ρ2 + y2
4. Moreover we observe that the solutions are repelled by the
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Figure 6: Embeddings along y4. As discussed in section 2.3, the background does not form a

D-brane shell in this direction. The D7-brane probe is repelled by the singularity at the origin.

The AdS radius has been set to R = 1 and the adjoint deformation to m = 0.2. Lengths are

dimensionless and measured in units of R. The dimensionless boundary value ŷ4 determines the

dimensionful quark mass mq according to mq = R
2πα′

ŷ4.

pointlike singularity11 at the origin. As discussed in section 2.3, the background shell of

polarized D3-branes does not extend into the y4 direction. Note that y4 = 0, corresponding

to vanishing quark mass, is also a solution for ρ > 0. Although the solutions for generic

quark mass are not constant, they are nevertheless supersymmetric, as discussed using the

methods of holographic renormalization in subsection 4.4.12

5.2 y7 embedding

On the other hand, if we choose the embedding y7 = y(ρ), y4 = 0, r2 = ρ2 + y2 instead, it

is P [C̃2] which vanishes, and we have for (5.1)

S = −T7

eφ̂

∫

d4ξ dΩ3 dρ
[

ρ3
√

1 + y′2

+
ρ3m2R4

36r4
√

1 + y′2

(

10ρ2 + 14y2 + 17ρ2y′2 + y2y′2 − 2ρyy′

− 24
√

1 + y′2(y2 − 2ρyy′)
)]

.

(5.4)

The corresponding D7-brane probe embeddings are shown in figure 7. The quark mass mq

is again identified with the boundary value of y7, with the same coefficients as given below

figure 6.

Figure 7 shows that the D7-brane probes remain outside the shell for large values of

the quark mass. For very small values of mq < 0.04, the approximation of the background

11As discussed around (2.21), in the perturbative treatment up to order O(m2) of the corrections to the

background we find a singularity at r = 0.
12Compare also with the discussion of supersymmetric non-constant solutions in [46].
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ρ
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ŷ7 = 0.15
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ŷ7 = 0.02
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Figure 7: Embedding in the y7 direction. The grey area corresponds to r ≤ mR2, into which

also the shell of dielectric D3-branes present in the background is expected to expand (R = 1 for

the radius, m = 0.2 for the adjoint masses, the dimensionless boundary value ŷ7 determines the

dimensionful quark mass mq according to mq = R
2πα′

ŷ7 ).

metric to order O(m2) in the adjoint masses breaks down: The embeddings are no longer

monotonic functions of r2 = ρ2 + y2 for r < mR2.

Following the discussion of section 2.3, we expect the brane shell originating from the

polarization of the background to expand into the y7 direction. From the original probe

calculation of [21], we expect the radius of the shell to be r0 ∼ kmR2, of the same order

as our expansion parameter mR2. k is a number of order one related to the flux of F2

on the D7 probe through the S2 wrapped by the D7. A definite statement about the

repulsion of the D7 probe by the shell in the background appears to be difficult since

the shell is expected to be of the same size as our expansion parameter. Nevertheless,

our result as displayed in figure 7 provides at least an indication that for small values

of mq, the D7 probes embedded in the y7 direction merge with the background shell of

polarized D3-branes at r0 ∼ mR2 = 0.2. This is supported further by the comparison

with the embeddings in the y4 direction, in which the shell does not form, as shown in

figure 6. Consider for instance the embeddings with boundary value ŷ4 = 0.04 in both

figures. We see that y4(ρ) with boundary value ŷ4 = 0.04 in figure 6 takes values smaller

than mR2 = 0.2, whereas y7(ρ = 0) for boundary value ŷ7 = 0.04 as shown in figure 7 is

bounded from below by mR2 = 0.2. Note also that the y7 embeddings with ŷ7 < 0.04 are

bounded from below at ρ = 0 by y7 = 0.175.

5.2.1 Meson mass

Finally, let us discuss some aspects of meson masses in the N = 2 Polchinski-Strassler

background, as obtained from small fluctuations about the embedding.

Let us first consider what is expected from field theory for the dependence of the meson
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Figure 8: y7 embedding: Meson mass in terms of quark mass mq (measured in units of R
2πα′

) for

adjoint mass m = 0.2.

mass on the quark mass. The contributions to the meson mass arise essentially from the

VEV’s of those contributions to the Lagrangian which break the U(1) symmetry [44]. In

our case these contributions are

Lbreaking = m2φ2
a + mψ̄aψa + mqψ̄fψf + m2

qφ
2
f , (5.5)

where ‘a’ stands for adjoint and ‘f’ for fundamental. Within QCD, M2 ∝ 〈Lbreaking〉 implies

the famous Gell-Mann-Oakes-Renner relation [45]. However in our case, VEV’s for fermion

bilinears are forbidden by supersymmetry (they are F terms of a chiral multiplet and a

non-vanishing VEV would imply that the vacuum is not SUSY invariant). Therefore, only

scalar VEV’s may contribute to the meson mass and we have M2 = bm2 + cm2
q, with b, c

some constants.

For the supergravity computation of the meson spectrum, we consider — as an example

– radial fluctuations around the solution y7 = y7(ρ), y4 = 0 of the form

δy7(ρ, x) = sin(k · x)h(ρ) , M2 = −k2 . (5.6)

We insert the ansatz (5.6) into the action (5.1) and obtain the equations of motion linearized

in h. The values for M for which the solution is regular correspond to the meson masses.

The result of this computation for the lowest-lying meson mode is plotted in figure 8.

The spectrum shows a mass gap and is in agreement with the behaviour M =
√

bm2 + cm2
q expected from field theory, at least for mq ≥ 0.04 (the quark masses mq

are given in units of R
2πα′ ). Note that due to our approximation of the gravity back-

ground to second order in the adjoint masses, the meson mass calculation breaks down

for mq < 0.04, where the embeddings become unphysical, as may be seen from figure 7.

For large values of mq, the meson mass approaches the AdS result M ∝ mq. It is also

instructive to plot the square of the meson mass versus the square of the quark mass. This

is done in figure 9. For mq ≥ 0.04 this approaches the expected linear behaviour, and
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Figure 9: Square of the meson mass of figure 8 in terms of the square of the quark mass mq

(measured in units of R
2πα′

) for adjoint mass m = 0.2.

for mq < 0.04 the expected breakdown of our approximation, which is already seen for the

embedding in figure 7.

A detailed analysis of the meson spectra for both radial and angular fluctuations around

both possible embeddings is beyond the scope of this paper. Due to the fact that the U(1)

symmetry in the two directions perpendicular to the D7 probe is broken already by the

background, not just by the brane embedding itself, there may potentially be a mixing of

δy4 and δy7 fluctuations. We leave a detailed study of the meson spectrum for the future.

6. Conclusions

By embedding a D7-brane probe into the N = 2 Polchinski-Strassler background, we

have provided a model of holography with flavour — involving D7-brane probes in a non-

conformal background — which is well under control both in the ultraviolet and in the

infrared. In particular since the background itself forms a D7-like structure in the infrared

via the blow-up of D3-branes, adding flavour via D7-brane probes appears to be natural.

Our embeddings preserve the supersymmetry of the background. The meson mass displays

a mass gap reflecting the presence of the adjoint masses, in agreement with field theory

expectations.

These appealing physical interpretations are encouraging in view of generalizations of

our results. It appears to be feasible to embed a D7-brane probe also in the standard N = 1

Polchinski-Strassler background [47]. Moreover from the view of applications to strongly

coupled non-supersymmetric gauge theories it would be very interesting to consider the

N = 0 background where also the gauginos acquire a mass [48]. Moreover, as mentioned

in the introduction, for the N = 2 case there is the possibility of inducing spontaneous

supersymmetry breaking via non-commutative instanton solutions on the D7-brane probe.
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From a mathematical viewpoint, it would be interesting to investigate our embeddings

using κ symmetry in order to confirm the choice of sign of the Chern-Simons contribution

to the action in (4.3). A further avenue is to investigate the holonomy and spinor structure

along the lines of [25, 49, 50]. Moreover, it would be interesting to study how the Donagi-

Witten field theory [29] in the infrared is modified by the presence of the D7-brane probe.

A further interesting avenue is to make contact with model building [51].

We conclude that embedding D7-brane probes into the Polchinski-Strassler background

is a promising approach for studying holography with flavour both conceptionally and in

view of applications.
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A. Notation and conventions

The Hodge duality operator ?d maps an r-form ωr to a (d − r)-form ?dωr. The latter has

the components

?dωa1...ad−r
=

√

|det gab|
r!

ε b1...br
a1...ad−r

ωb1...br
, (A.1)

where we have defined

ε12...d = 1 . (A.2)

The wedge product of an r-form ωr and a (d − r)-form λd−r in a d-dimensional space Σd

with metric gab with τ negative eigenvalues and volume form

dvol(Σd) =
√

|det gab|ddξ (A.3)

reads

ωr ∧ λd−r = ωr · (?dλ)r dvol(Σd) , ?2
d = (−1)r(d−r)+τ . (A.4)

The inner product of two r-forms ωr and ω′
r is thereby defined as

ωr · ω′
r =

1

r!
ga1b1 . . . garbrωa1...arω

′
b1...br

. (A.5)
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The components of the Hodge dual of an r-form are given in (A.1). The wedge product

therefore becomes

ωr ∧ λd−r =
det gab

r!(d − r)!
εa1...arc1...cd−rωa1...arλc1...cd−r

dξd

=
1

r!(d − r)!
εa1...arc1...cd−r

ωa1...arλc1...cd−r
dξd ,

(A.6)

where in the last equality the independence of the wedge product of the (curved) metric

has been used such that there the summation is understood as in flat space.

In type IIB supergravity the physical field strengths are defined as

F̃r = dCr−1 − dB ∧ Cr−3 , r = 1, 3, 5 , (A.7)

where for r = 1 the second term is zero. The missing forms of higher degree (r = 7, 9) are

found by applying the (D = 10)-dimensional Hodge duality operator ? = ?10

F̃9 = ?SF̃1 , F̃7 = − ?S F̃3 , F̃5 = ?SF̃5 , (A.8)

where the suffix S indicates the use of the string frame metric in the definition of the Hodge

star operator (A.1).

F̃5 is self dual. This is a particularity we have to take into account. Following the

conventions of [24], the 5-form field strength F̃5 is derived from a redefined 4-form potential

C4. We have to replace

C4 → C4 +
1

2
B ∧ C2 . (A.9)

Inserting this into (A.7), one finds

F̃5 = ?F̃5 = F5 −
1

2
C2 ∧ H3 +

1

2
F3 ∧ B . (A.10)

The Hodge star operator in (A.8) is evaluated with the string frame metric. Defining

the relation

gE
MN = e−

φ−φ̂

2 gS
MN (A.11)

between the metric in the Einstein and the string frame, the corresponding Hodge stars,

acting on an r-form, are related via

?E = e
φ−φ̂

2
(r−D

2
) ?S . (A.12)

We will skip the suffix E, denoting the Einstein frame, since this is the frame in which we

work in the paper.

The only equation of motion which we will need for our determination of C8 is the one

for the complex dilaton-axion τ

d?dτ − 1

i Im τ
dτ ∧ ?dτ − eφ̂

2i
G3 ∧ ?G3 = 0 . (A.13)
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which with the covariant derivative DM becomes in components

D2τ − 1

i Im τ
∂Mτ∂Mτ − eφ̂

2i
G3 · G3 = 0 . (A.14)

Since also the corrections to the background respect the four-dimensional Lorentz in-

variance, the metric always remains block diagonal w.r.t. the four directions longitudinal

and the six directions transverse to the D3-brane. All further fields also do not contain

mixed components, and hence the ten-dimensional Hodge star w.r.t. the unperturbed met-

ric (2.1) effectively decomposes as

?(dxi1 ∧ · · · ∧ dxir) = Z
1−r
2 ?6 (dxi1 ∧ · · · ∧ dxir) ∧ dvol(

�1,3) , (A.15)

where ?6 is the six-dimensional Hodge star w.r.t. flat Euclidean space.

In the expressions for the embedding of the D7-brane one has to use the inner product

and Hodge star defined w.r.t. the pullback quantities. P [δ]ab denotes the pullback of the

Kronecker delta and P [δ]ab its inverse. For two r-forms ωr, λr they are defined as

ωr · λr =
1

r!
P [δ]a1b1 . . . P [δ]arbrωa1...arλb1...br

, (A.16)

?dωa1...ad−r
=

√

detP [δ]ab

r!
P [δ]c1b1 . . . P [δ]crbrωc1...crεb1...bra1...ad−r

. (A.17)

The Kronecker delta arises from the metric (2.1) in the six directions yi perpendicular to

the D3-branes.

B. The complex basis

It is convenient to introduce a complex basis with coordinates zp and their complex con-

jugates z̄p, defined in (2.9) and given by

zp =
1√
2
(yp+3 + iyp+6) , p = 1, 2, 3 . (B.1)

In particular, for δij one has in the complex basis

δpq̄ = δp̄q =

{

1 p = q

0 p 6= q
, δpq = 0 . (B.2)

A complex 2-form can be written as

ω2 =
1

2
ωpq dzp ∧ dzq + ωpq̄ dzp ∧ dz̄q +

1

2
ωp̄q̄ dz̄p ∧ dz̄q , (B.3)

where we have used ωpq̄ = −ωq̄p. The components of its complex conjugate fulfill

ω̄pq = ωp̄q̄ , ω̄pq̄ = ωp̄q , ω̄p̄q̄ = ωpq . (B.4)
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Subtracting and adding to ω2 its complex conjugate, one finds

ω ± ω̄2 =
1

2
(ωpq ± ωp̄q̄) dzp ∧ dzq + (ωpq̄ ± ωp̄q) dzp ∧ dz̄q +

1

2
(ωp̄q̄ ± ωpq) dz̄p ∧ dz̄q .

(B.5)

The real and imaginary part of ω2 in the complex basis (2.9) are then found to be

Reωpq =
1

2
(ωpq + ωp̄q̄) ,

Reωpq̄ =
1

2
(ωpq̄ + ωp̄q) ,

Reωp̄q = −1

2
(ωqp̄ + ωq̄p) ,

Reωp̄q̄ =
1

2
(ωp̄q̄ + ωpq) ,

Im ωpq = − i

2
(ωpq − ωp̄q̄) ,

Im ωpq̄ = − i

2
(ωpq̄ − ωp̄q) ,

Im ωp̄q =
i

2
(ωqp̄ − ωq̄p) ,

Im ωp̄q̄ = − i

2
(ωp̄q̄ − ωpq) .

(B.6)

In the complex basis (2.9) the inner product of two 2-forms reads

ω2 · ω′
2 =

1

2
(ωpqω

′
p̄q̄ + ωp̄q̄ω

′
pq) + ωpq̄ω

′
p̄q , (B.7)

where summation over repeated indices is understood.

With the convention ε456789 = 1 in the real basis, the non-vanishing components of the

six-dimensional total antisymmetric tensor density in the complex basis are given by

ε1231̄2̄3̄ = −i (B.8)

and permutations thereof. A general component can then be represented as

εpqrs̄t̄ū = −iεpqrεs̄t̄ū = −i
(

(δps̄δqt̄ − δpt̄δqs̄)δrū + (δpt̄δqū − δpūδqt̄)δrs̄ + (δpūδqs̄ − δps̄δqū)δrt̄

)

.

(B.9)

Here a warning has to be made. The above representation in that form is valid only for the

given order of unbared and bared components, since the r.h.r. is not totally antisymmetric

under permutations of bared and unbared indices. In the generic case one has to adjust

the global sign of the r.h.s. to take care of the order. For example, interchanging r and s̄

yields

εpqs̄rt̄ū = iεpqrεs̄t̄ū = i
(

(δps̄δqt̄−δpt̄δqs̄)δru+(δpt̄δqū−δpūδqt̄)δrs̄+(δpūδqs̄−δps̄δqū)δrt̄

)

. (B.10)

An embedding of a D7-brane along za, zb, z̄a, z̄b, a, b = 2, 3 and perpendicular to zm,

z̄m, m = 1 induces a four-dimensional total antisymmetric tensor density on the parallel

four directions. One obtains from (B.9) for the six-dimensional tensor density

εmabm̄c̄d̄ = −iεmabεm̄c̄d̄ = −i(δac̄δbd̄ − δad̄δbc̄) . (B.11)

The four-dimensional ε tensor then reads

εabc̄d̄ = −εac̄bd̄ = −iεmabm̄c̄d̄ = −εmabεm̄c̄d̄ = −δac̄δbd̄ + δad̄δbc̄ , (B.12)

where the factor i is chosen to ensure that in real coordinates the four-dimensional ε tensor

is normalized to 1. With the above results, a four-dimensional Hodge star operator on the
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parallel four directions is defined. Using the representation (B.12), one finds that ?4 acts

on a 2-form ω2 as follows

?4ωab = −ωab , ?4ωab̄ = ωab̄ − δab̄ωcc̄ , ?4ωāb = ωāb − δab̄ωc̄c , ?4ωāb̄ = −ωāb̄ , (B.13)

where a summation over c is understood. The above relations act differently on the com-

ponents of ω2 which are parallel to purely (anti)holomorphic directions and which point in

mixed directions. A generic 2-form ω2 behaves as

1

2
(1 − ?4)ω2 = ω(2,0) + ω(0,2) −

i

2
ωcc̄K ,

1

2
(1 + ?4)ω2 = ωP

(1,1) , (B.14)

where P denotes the primitive part of ω2, i.e. ωP
2 · K = 0 and

K = iδab̄ dza ∧ dz̄b (B.15)

is the Kähler form of the flat four-dimensional space. A general linear combination with

?4 then acts as

(α − β?4)ω2 = (α + β)
(

ω(2,0) + ω(0,2) −
i

2
ωcc̄K

)

+ (α − β)ωP
(1,1) . (B.16)

In the complex basis the exterior derivative operator d splits into its holomorphic and

antiholomorphic derivative ∂ and ∂̄, respectively

d= ∂ + ∂̄ . (B.17)

The nilpotency of d translates into the relations

∂2 = ∂̄2 = 0 , ∂∂̄ = −∂̄∂ . (B.18)

The components of the tensor T3 (2.11) in the real basis read

Tp+3 q+3 r+3 =
1

2
√

2
εpqr(m1 + m2 + m3) = iTp+6 q+6 r+6 ,

Tp+3 q+3 r+6 = − i

2
√

2
εpqr(m1 + m2 − m3) = −iTp+6 q+6 r+3 ,

Tp+3 q+6 r+3 = − i

2
√

2
εpqr(m1 − m2 + m3) = −iTp+6 q+3 r+6 ,

Tp+6 q+3 r+3 =
i

2
√

2
εpqr(m1 − m2 − m3) = −iTp+3 q+6 r+6 .

(B.19)

The 2-form S2 as defined in (2.8) reads

S2 =
1

2
εpqr(mpz

p dz̄q ∧ dz̄r + mq z̄
p dzq ∧ dz̄r + mrz̄

p dz̄q ∧ dzr)

=
1

2
εpqr(mpz

p dz̄q + 2mq z̄
p dzq) ∧ dz̄r .

(B.20)

One finds from (B.20) that the components of S2 are given by

Spq̄ = εrpqmpz̄
r , Sp̄q = εrpqmq z̄

r , Sp̄q̄ = εrpqmrz
r . (B.21)
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The components of the real and imaginary parts then read

Re Spq =
1

2
εrpqmrz̄

r ,

Re Spq̄ =
1

2
εrpq(mpz̄

r + mqz
r) ,

Re Sp̄q =
1

2
εrpq(mq z̄

r + mpz
r) ,

Re Sp̄q̄ =
1

2
εrpqmrz

r ,

ImSpq =
i

2
εrpqmrz̄

r ,

ImSpq̄ = − i

2
εrpq(mpz̄

r − mqz
r) ,

ImSp̄q = − i

2
εrpq(mq z̄

r − mpz
r) ,

ImSp̄q̄ = − i

2
εrpqmrz

r ,

(B.22)

where p, q are not summed over. It is easily checked that the real and imaginary parts

with mixed components are consistent with the antisymmetry of S2.

Taking into account the split of the coordinates according to the presence of a D7-

brane, the complex 2-form S2 as given in (B.20) decomposes in terms of the coordinates

za, zb, z̄a, z̄b and zm, z̄m along and transverse to the D7-brane as

S2 = S
‖
2 + Smixed

2 ,

S
‖
2 =

1

2

(

Tmāb̄z
m dz̄a ∧ dz̄b + 2Tm̄ab̄z̄

m dza ∧ dz̄b
)

,

Smixed
2 = Tbām̄zb dz̄a ∧ dz̄m + Tb̄am̄z̄b dza ∧ dz̄m + Tb̄māz̄

b dzm ∧ dz̄a ,

(B.23)

where the components in purely transverse directions vanish. We have restored the 3-

tensor T3 according to (2.8). This is convenient for a later identification of the individual

contributions in terms of the 2-form potentials. The pullback into the four directions za,

zb, z̄a, z̄b can be recast as follows

P [S2] =
3

2
Tmāb̄z

m dz̄a ∧ dz̄b + 3Tm̄ab̄z̄
m dza ∧ dz̄b

− (∂ + ∂̄)(Tmāb̄z
mz̄a dz̄b + Tm̄ab̄z̄

mza dz̄b + Tm̄ābz̄
mz̄a dzb) ,

(B.24)

where ∂, ∂̄ act along the four parallel directions. We have rearranged some terms to com-

plete exterior derivatives, which will turn out to be useful in the following. The imaginary

part of the above expression then decomposes into its holomorphic and antiholomorphic

components as follows

P [Im S2](2,0) = i
3

2
S̄
‖
(2,0) −

i

2
∂θ = 3 Im S

‖
(2,0) −

i

2
∂θ ,

P [Im S2](1,1) = −i
3

2
(S

‖
(1,1) − S̄

‖
(1,1)) −

i

2
(∂̄θ − ∂θ̄) = 3 Im S

‖
(1,1) −

i

2
(∂̄θ − ∂θ̄) ,

P [Im S2](0,2) = −i
3

2
S
‖
(0,2) +

i

2
∂̄θ̄ = 3 Im S

‖
(0,2) +

i

2
∂̄θ̄ .

(B.25)

We have thereby made use of the definition of the parallel components in (B.23), as well

as of the results S(2,0) = 0 and S̄(0,2) = 0. The 1-form θ that appears above is defined as

θ = θ(1,0) = (T̄mābz̄
azm + T̄m̄abz

az̄m − Tm̄ābz̄
az̄m) dzb . (B.26)
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Inserting (B.22) into (2.13), one finds that the individual components of C̃2 and B in

the complex basis are given by

C̃pq = e−φ̂ ζ

6
Zεrpqmrz̄

r ,

C̃pq̄ = e−φ̂ ζ

6
Zεrpq(mpz̄

r + mqz
r) ,

C̃p̄q = e−φ̂ ζ

6
Zεrpq(mq z̄

r + mpz
r) ,

C̃p̄q̄ = e−φ̂ ζ

6
Zεrpqmrz

r ,

Bpq = −i
ζ

6
Zεrpqmrz̄

r ,

Bpq̄ = i
ζ

6
Zεrpq(mpz̄

r − mqz
r) ,

Bp̄q = i
ζ

6
Zεrpq(mq z̄

r − mpz
r) ,

Bp̄q̄ = i
ζ

6
Zεrpqmrz

r .

(B.27)

In the special case m1 = 0, m2 = m3 = m, the inner products in four dimensions hence

become

C̃2 · C̃2 = C̃abC̃āb̄ + C̃ab̄C̃āb = e−2φ̂ ζ2m2

18
Z2(2zmz̄m + zmzm + z̄mz̄m) ,

B · B = BabBāb̄ + Bab̄Bāb =
ζ2m2

18
Z2(2zmz̄m − zmzm − z̄mz̄m) ,

(B.28)

and

C̃2 · ?4C̃2 = −C̃abC̃āb̄ + C̃aāC̃bb̄ + C̃ab̄C̃āb = e−2φ̂ ζ2m2

18
Z2(2zmz̄m + zmzm + z̄mz̄m) ,

B · ?4B = −BabBāb̄ + BaāBbb̄ + Bab̄Bāb =
ζ2m2

18
Z2(2zmz̄m − zmzm − z̄mz̄m) .

(B.29)

A combination that appears in the equations of motion for the embedding is then

determined as

1

2
Z−1

(

1 − 2

3
?4

)

B · B − 1

6
e2φ̂ Z−1 ?4 C̃2 · C̃2 = −ζ2m2

54
Z(zmzm + z̄mz̄m) , (B.30)

where ?4 is understood to act on the first form on its right.

Furthermore, one needs similar expressions where not all components are summed.

They read

Z−1

3

(

(1 − 4?4)(BabBmb̄ + Bab̄Bmb) − e2φ̂ ?4(C̃abC̃mb̄ + C̃ab̄C̃mb)
)

=
ζ2m2

54
Z(2z̄az̄m − z̄azm) ,

Z−1

3

(

(1 − 4?4)(BābBmb̄ + Bāb̄Bmb) − e2φ̂ ?4(C̃ābC̃mb̄ + C̃āb̄C̃mb)
)

=
ζ2m2

54
Z(2zaz̄m − zazm) ,

(B.31)

where on the l.h.s. a sum over b is understood, and a, m take fixed values. One thereby

first has to act with ?4 on the right and then extract the required components

The correction to the dilaton decomposes as

φ̃ = ϕY+ , (B.32)
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where ϕ = ϕ(r), and the spherical harmonic Y+ arises as the real part of the expression

TijkVijk = VijkVijk =
3

r2
yiylTijkTljk = 2M2(Y+ − Y−) , (B.33)

where M2 is defined as the sum of the squares of all masses as in (2.18). The tensor Vijk is

defined in [21], and for generic masses Y± are SO(6) spherical harmonics with eigenvalue

− 12
R2 which are explicitly given by

Y± =
3

M2r2

(

m2m3(z
1z1 ± z̄1z̄1) + m1m3(z

2z2 ± z̄2z̄2) + m1m2(z
3z3 ± z̄3z̄3)

)

. (B.34)

The above tensor contraction appears on the r.h.s. in the equation of motion (A.14) for

the complex dilation-axion τ .

G3 · G3 =
ζ2

3!
Z

1

2

(

Tijk −
4

3
Vijk

)(

Tijk − 4

3
Vijk

)

= −4ζ2

27
Z

1

2 TijkVijk . (B.35)

With these results, it is easy to determine the radial dependent part in (B.32) as

ϕ =
ζ2M2R2

108
Z

1

2 . (B.36)

The tensors (2.17) for the corrected metric (2.16) read in complex coordinates

Ipq = − z̄pz̄q

10zz̄
, Ipq̄ =

1

5

(

δpq̄ −
z̄pzq

2zz̄

)

, (B.37)

and

Wpq =
1

4M2zz̄
(2δpq̄mpmrz̄

r z̄r − (m2
p + m2

q)z̄
pz̄q) +

z̄pz̄q

10zz̄
,

Wpq̄ =
1

20

(

δpq̄ − 3
z̄pzq

zz̄

)

+
1

4M2zz̄
((m2

p + m2
q)z̄

pzq − 2mpmqz
pz̄q) .

(B.38)

The remaining components are obtained by complex conjugation from the above expres-

sions. Taking the traces of the corrections in (2.16) w.r.t. to the four-dimensional subspace,

i.e. summing over a = 2, 3, thereby using that

ρ2 = 2zaz̄a , u2 = 2zmz̄m , r2 = ρ2 + u2 , (B.39)

one finds

g̃aa =
1

10
(6p + 10q − w) +

u2

r2

1

10
(2p − 10q + 3w) . (B.40)

Furthermore, the required off-diagonal elements read

g̃am =
1

10zz̄
(5q − p + w)z̄az̄m − w

4M2zz̄
(m2

a + m2
m)z̄az̄m ,

g̃ām =
1

20zz̄
(10q − 2p − 3w)zaz̄m +

w

4M2zz̄
((m2

a + m2
m)zaz̄m − 2mammz̄azm) ,

(B.41)

where the missing combinations are obtained by complex conjugation. Furthermore, ma

and mm indicate the masses corresponding to the direction a = 2, 3 and m = 1 in the

complex basis, respectively. No summation over a and m is understood on the r.h.s. In

particular, we need the specialization to mm = 0 and ma = m independent of a.
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C. Form relations to compute C8

We will work with generic masses in the following. This keeps the expressions compact

and leads to a result which is valid beyond the special case analyzed in this paper. The

determination of C8 requires the explicit result for the wedge product of S2 with its complex

conjugate S̄2. Using the explicit expression (B.20) for S2 and its complex conjugate, as

well as the representation of the product of two ε tensors in terms of Kronecker δs similar

to (B.9), the result can be recast into the form

S2 ∧ S̄2 = −1

2
(mpmp − 2mqmq)z

pz̄p dzq ∧ dz̄q ∧ dzr ∧ dz̄r

− 1

2
(mpmp − mqmq)(z

pzq dz̄q ∧ dz̄p − z̄pz̄q dzq ∧ dzp) ∧ dzr ∧ dz̄r

+ mqmq z̄
pzr dzq ∧ dz̄q ∧ dz̄r ∧ dzp .

(C.1)

Introducing the diagonal mass matrix and its square

Mpq = mpδpq , M2
pq = MprMrq = m2

pδpq , (C.2)

one can rewrite (C.1) as

S2 ∧ S̄2 =

[

− 1

2
zM2z̄ dz ∧ dz̄ + zz̄ dz

M2

∧ dz̄ − z dz̄ ∧ zM2 dz̄

+ z̄ dz ∧ z̄M2 dz

]

∧ dz ∧ dz̄

+ dz
M2

∧ dz̄ ∧ z dz̄ ∧ z̄ dz .

(C.3)

The following abbreviations have thereby been used

zz̄ = zpz̄p , zM2z̄ = m2
pz

pz̄p , dz ∧ dz̄ = dzp ∧ dz̄p , dz
M2

∧ dz̄ = m2
p dzp ∧ dz̄p ,

z dz̄ ∧ z̄ dz = zp dz̄p ∧ z̄q dzq , z dz̄ ∧ zM2 dz̄ = m2
qz

p dz̄p ∧ zq dz̄q ,

(C.4)

where a summation over p, q = 1, 2, 3 is understood on the r.h.s., and a similar abbreviation

holds for the complex conjugate of the last expression. With the relations

z dz̄ ∧ zM2 dz̄ = d(zz̄) ∧ zM2 dz̄ − z̄ dz ∧ d(zM2z̄) + z̄ dz ∧ z̄M2 dz ,

z̄ dz ∧ d(zM2z̄) = − d(zM2z̄z̄ dz) − zM2z̄ dz ∧ dz̄
(C.5)

the result can be rewritten as

S2 ∧ S̄2 =

[

− 3

2
zM2z̄ dz ∧ dz̄ + zz̄ dz

M2

∧ dz̄ − d(zz̄) ∧ zM2 dz̄

− d(zM2z̄z̄ dz)

]

∧ dz ∧ dz̄

+ dz
M2

∧ dz̄ ∧ d(zz̄) ∧ z̄ dz .

(C.6)
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Inserting the definition of Z and the expression for r2 in complex coordinates into the

Bianchi identity (3.14), one must be able to write d(zz̄)−2 ∧ S2 ∧ S̄2 at least locally as an

exact form. The above expression can be seen as the special case for a more generic 5-form

with parameter β, which becomes

d(zz̄)β ∧ S2 ∧ S̄2 =

[

− 3

2
zM2z̄ d(zz̄)β ∧ dz ∧ dz̄ +

β

β + 1
d(zz̄)β+1 ∧ dz

M2

∧ dz̄

+ β d((zz̄)β−1zM2z̄z dz̄ ∧ z̄ dz)

]

∧ dz ∧ dz̄ .

(C.7)

The first term can be rewritten such that it is the exterior derivative of a 4-form potential

zM2z̄ d(zz̄)β ∧ dz ∧ dz̄ ∧ dz ∧ dz̄

= d

(

(zz̄)β
∑

p 6=q 6=r

(

zM2z̄ − 1

β + 1
zz̄m2

p

)

dzq ∧ dz̄q ∧ dzr ∧ dz̄r

)

.
(C.8)

As a check one can take the limit of equal masses m = m1 = m2 = m3 to find an obvious

identity.

One then finds immediately that the form d(zz̄)β ∧ S2 ∧ S̄2 follows from a 4-form

potential λ4, i.e.

dλ4 = d(zz̄)β ∧ S2 ∧ S̄2 , (C.9)

which is given by

λ4 = (zz̄)β
[

− 3

2

∑

p 6=q 6=r

(

zM2z̄ − 1

β + 1
zz̄m2

p

)

dzq ∧ dz̄q +
β

β + 1
zz̄ dz

M2

∧ dz̄

− d(zM2z̄z̄ dz)

]

∧ dzr ∧ dz̄r .

(C.10)

Replacing parts of the expression by (zz̄)βS2 ∧ S̄2 and then integrating by parts and ne-

glecting terms that can be written as an exterior derivative acting on a 3-form, one finds

that an equivalent 4-form potential λ4, obeying (C.9), is given by

λ4 = (zz̄)βS2 ∧ S̄2 +
3

2(β + 1)
(zz̄)β+1

∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r .

(C.11)

One could stop at this point and use this λ4 in the special case β = −2 to compute ω4

from (3.15). However it turns out that it is possible to find an even simpler λ4 which is

entirely expressed in terms of S2 and S̄2. This is demonstrated in the following.

Taking the exterior derivative of (C.11)

dλ4 = d(zz̄)β ∧ S2 ∧ S̄2 + (zz̄)β d(S2 ∧ S̄2)

+
3

2
(zz̄)β d(zz̄) ∧

∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r ,

(C.12)
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the last two terms have to cancel against each other to be in accord with (C.9). This is

guaranteed by the relation

S2 ∧ S̄2 +
3

2
zz̄

∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r = dλ3 , (C.13)

where λ3 is a three form. This result is a special case of a more general identity which

holds for the product (zz̄)βS2 ∧ S̄2. Using the Leibnitz rule for the exterior derivative, one

finds from (C.6) that the product becomes

(zz̄)βS2 ∧ S̄2 = (zz̄)β
[

− 3

2
zM2z̄ dz ∧ dz̄ +

β + 3

β + 1
zz̄ dz

M2

∧ dz̄

]

∧ dz ∧ dz̄

+ zM2z̄ d(zz̄)β ∧ z̄ dz ∧ dz ∧ dz̄ + dσ3 ,

σ3 =
(zz̄)β

β + 1

(

zz̄ dz
M2

∧ dz̄ ∧ z̄ dz − (zz̄zM2 dz̄ + zM2z̄z̄ dz) ∧ dz ∧ dz̄
)

.

(C.14)

Using this expression, one can build the following linear combination with a constant b

(zz̄)βS2 ∧ S̄2 + b(zz̄)β+1
∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r

= (zz̄)β
[

− 1

2

∑

p 6=q 6=r

(

3(m2
pz

pz̄p + 2m2
qz

q z̄q) − 2bm2
pzz̄

)

dzq ∧ dz̄q

+

(

β + 3

β + 1
− 2b

)

zz̄ dz
M2

∧ dz̄

]

∧ dzr ∧ dz̄r

+ zM2z̄ d(zz̄)β ∧ z̄ dz ∧ dz ∧ dz̄ + dσ3 .

(C.15)

By using similar manipulations as the ones applied to obtain (C.8), the term in the last

line can be rewritten as

zM2z̄ d(zz̄)β ∧ z̄ dz ∧ dz ∧ dz̄

= (zz̄)β
∑

p 6=q 6=r

(

β

β + 1
m2

pzz̄ + 3(m2
q − m2

p)z
q z̄q

)

∧ dzq ∧ dz̄q ∧ dzr ∧ dz̄r + dω3 ,

(C.16)

where

ω3 =

[

(zz̄)βzM2z̄z̄ dz − 1

β + 1

∑

p 6=q 6=r

m2
p(zz̄)β+1z̄q dzq

]

∧ dzr ∧ dz̄r . (C.17)

Inserting this identity into the linear combination, one obtains

(zz̄)βS2 ∧ S̄2 + b(zz̄)β+1
∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r

=

(

β + 3

β + 1
− 2b

)

(zz̄)β+1

[

1

2

∑

p 6=q 6=r

m2
pz

q z̄q dzq ∧ dz̄q + dz
M2

∧ dz̄

]

∧ dzr ∧ dz̄r + dλ3 ,

(C.18)
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where λ3 = σ3 + ω3. It is obvious that for b = β+3
2(β+1) the combination is an exact 4-form,

i.e.

(zz̄)βS2 ∧ S̄2 +
β + 3

2(β + 1)
(zz̄)β+1

∑

p 6=q 6=r

(m2
p − m2

q − m2
r) dzq ∧ dz̄q ∧ dzr ∧ dz̄r = dλ3 .

(C.19)

Since the potential λ4 given by (C.11) is only defined up to adding exact 4-forms, the above

result can be used to simplify the expression, expressing λ4 in terms of S2 and S̄2 only.

One finally obtains

λ4 =
β

β + 3
(zz̄)βS2 ∧ S̄2 . (C.20)

In the special case β = −2 this result is the required 4-form potential for the first term

in (3.15).

D. Expansion of the Dirac-Born-Infeld and Chern-Simons action

With Bµν = 0, Fµν = 0, and a block-diagonal metric, the Dirac-Born-Infeld action (4.2)

can be rewritten as

SDBI = −T7

∫

d8ξ e−φ

√

∣

∣ det e
φ−φ̂

2 gµν

∣

∣det
(

P [E]ab + 2πα′Fab

)

, (D.1)

where P denotes the pullback w.r.t. the full metric onto the four worldvolume directions

a, b, . . . of the D7-brane. Furthermore, EMN is defined as

EMN = e
φ−φ̂

2 gMN − BMN . (D.2)

Using the expansion of the determinant which up to second order is given by

√

det(M + M̃) =
√

detM

(

1 +
1

2
tr M−1M̃ +

1

8
(tr M−1M̃)2 − 1

4
tr M−1M̃M−1M̃

)

,

(D.3)

and the expression for the metric in (2.1), the first determinant factor of (D.1) expands up

to quadratic order in the mass perturbation as

√

∣

∣det e
φ−φ̂

2 gµν

∣

∣ = eφ−φ̂ Z−1

(

1 +
1

2
Z

1

2 g̃µµ

)

, (D.4)

where summation over doubled indices is understood w.r.t. the flat Minkowski metric.

The combination EMN can be decomposed as

EMN = ĝMN +
φ̃

2
ĝMN + g̃MN − BMN . (D.5)

‘Hats’ denote the unperturbed quantities, e.g. ĝMN is the metric (2.1), while a ‘tilde’

denotes the correction starting at quadratic order in the perturbation. Using (4.4) for the
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pullback in static gauge, inserting it into the expansion (D.3), and keeping terms up to

quadratic order in the perturbation, one finds

√

detP [E]ab =
√

det P [ĝ]ab

(

1 + φ̃ +
1

2
P [ĝ]abP [g̃]ab −

1

4
P [ĝ]abP [ĝ]cdP [B]bcP [B]da

)

.

(D.6)

Here P [ĝ]ab denotes the inverse of the pullback metric P [ĝ]ab. Combining the above result

with (D.4), and restoring the dependence on Fab by replacing Bab → Bab − 2πα′Fab, the

Dirac-Born-Infeld action (D.1) reads

SDBI = −T7

eφ̂

∫

d8ξ
√

detP [δ]ab

(

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 P [δ]abP [g̃]ab

− 1

4
Z−1P [δ]abP [δ]cd(P [B] − 2πα′F )bc(P [B] − 2πα′F )da

)

,

(D.7)

where we have cancelled factors of Z by making use of the fact that for the six coordinates

labelled by i, j the unperturbed metric (2.1) fulfills ĝij = Z
1

2 δij .

Similar to the Dirac-Born-Infeld action, also the Chern-Simons action obtains cor-

rections by the mass perturbation. With the induced forms C6 and C8 given in (2.15)

and (3.18) respectively, one finds up to order O(m2) for the Chern-Simons action (P [F ]=F )

SCS = −µ7

∫

P

[(

1

2
(Ĉ4 + C̃4) ∧ (−B + 2πα′F ) + C6

)

∧ (−B + 2πα′F ) + C8

]

= −µ7

∫

P

[

Ĉ4 ∧
(

− 1

3
B ∧ (B + 2πα′F ) + 2π2α′2F ∧ F − 1

6
e2φ̂ C̃2 ∧ C̃2

)]

.

(D.8)

Using the explicit expression for Ĉ4 (2.4) and the component expression for the wedge

products (A.6), one can reexpress the Chern-Simons part as

SCS = µ7 e−φ̂

∫

d8ξ
1

4
Z−1εabcd

(

1

3
P [B]abP [B]cd +

2

3
πα′P [B]abFcd − 2π2α′2FabFcd

+
1

6
e2φ̂ P [C̃2]abP [C̃2]cd

)

.

(D.9)

Using that T7 = µ7, the complete expanded action is the sum of (D.7) and (D.9). It reads

S = −T7

eφ̂

∫

d8ξ

[

√

det P [δ]ab

(

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 P [δ]abP [g̃]ab

)

+
1

4
Z−1

(

√

det P [δ]abP [δ]acP [δ]bd(P [B] − 2πα′F )ab(P [B] − 2πα′F )cd

− εabcd

(

1

3
P [B]abP [B]cd +

2

3
πα′P [B]abFcd − 2π2α′2FabFcd

+
1

6
e2φ̂ P [C̃2]abP [C̃2]cd

))]

.

(D.10)

The result (4.6) is then found after using the relations (A.4), (A.5) and (A.6).
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E. Perturbative expansion of the embedding

An expansion of the embedding (4.22) into the unperturbed constant AdS5×S5 embedding

X̂m and a correction X̃m, that turns out to be of order O(m2), simplifies the problem

further. Inserting this decomposition into (4.6), the first simplification is that the pullbacks

of the Kronecker δ become the Kronecker δ on the worldvolume of the D7-brane. Since

the equations of motion are found by taking derivatives w.r.t. X̃m and ∂aX̃
m, one has to

keep those terms which contribute up to order O(m2) to the equations, even if they are of

higher order in the action. The action found in this way is given by (4.26). The equations

of motion derived from it are given by

∂a

(

∂aX̃
m + Z− 1

2 g̃ma +
Z−1

3

(

(1 − 4?4)BabBmb + e2φ̂(?4C̃)abC̃mb

)

)

=
∂

∂X̃m

(

φ̃ +
Z

1

2

2
g̃µµ +

Z− 1

2

2
g̃aa +

Z−1

2

((

1 − 2

3
?4

)

B · B − e2φ̂

3
?4 C̃2 · C̃2

))
∣

∣

∣

∣

X̃m=0

,

(E.1)

where a sum over a, b = 5, 6, 8, 9 is understood and m = 4, 7 are the two directions trans-

verse to the D7-brane. Transforming the summation on the l.h.s. to complex coordinates,

the above result reads

2∂a∂ā ˜̄zm + ∂a

(

Z− 1

2 g̃mā

)

+ ∂ā

(

Z− 1

2 g̃ma

)

+ ∂a

(

Z−1

3

(

(1 − 4?4)(BābBmb̄ + Bāb̄Bmb) − e2φ̂((?4C̃)ābC̃mb̄ + (?4C̃)āb̄C̃mb

)

)

+ ∂ā

(

Z−1

3

(

(1 − 4?4)(BabBmb̄ + Bab̄Bmb) − e2φ̂((?4C̃)abC̃mb̄ + (?4C̃)ab̄C̃mb)
)

)

=
∂

∂z̃m

(

φ̃ +
Z

1

2

2
g̃µµ +

Z− 1

2

2
g̃aa +

Z−1

2

((

1 − 2

3
?4

)

B · B − e2φ̂

3
?4 C̃2 · C̃2

))
∣

∣

∣

∣

z̃m=˜̄zm=0

.

(E.2)

The individual expressions that enter the above equation are given by the derivatives of

the results computed in appendix B. From (B.30) one finds with the definition of ρ, u and

r in (B.39)

∂m

(

Z−1

2

(

1 − 2

3
?4

)

B · B − Z−1

6
e2φ̂ ?4C̃2 · C̃2

)

=−ζ2m2

27
Z

((

1 − u2

r2

)

zm − 2
(z̄m)3

r2

)

.

(E.3)

The derivative of (B.31) reads

1

3
∂a

(

Z−1
(

(1 + 4?4)(BābBmb̄ + Bāb̄Bmb) + e2φ̂ ?4(C̃ābC̃mb̄ + C̃āb̄C̃mb)
))

+ (a ↔ ā)

=
2ζ2m2

27
Z(2z̄m − zm)

u2

r2
.

(E.4)

The gradient of the dilaton as given in (B.32) becomes in the case m1 = 0, m2 = m3 = m

∂mφ̃ =
ζ2m2

18
Z

(

− 2
(z̄m)3

r2
+

(

1 − u2

r2

)

zm

)

. (E.5)
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The derivative of the subtraces of the corrections to the metric in (B.40) become

1

2
∂m

(

Z− 1

2 (Zg̃µµ + g̃aa)
)

=
1

5R2

(

3p − 15q + 2w − (2p − 10q + 3w)
u2

r2

)

z̄m . (E.6)

Finally, the derivatives of the off-diagonal elements of the corrections to the metric in (B.41)

are found to be given by

∂a(Z
− 1

2 g̃ām) + ∂ā(Z
− 1

2 g̃am) =
1

5R2
(20q − 4p − ω)

u2

r2
z̄m . (E.7)

Inserting the above equations into (E.2), one obtains

2∂a∂ā ˜̄zm =
ζ2m2

54
Z

(

− 8
u2

r2
z̄m +

(

1 + 3
u2

r2

)

zm − 2
(z̄m)3

r2

)

+
1

5R2

(

3p − 15q + 2ω + (2p − 10q − 2ω)
u2

r2

)

z̄m .

(E.8)

The quantities on the r.h.s. have to be evaluated using the unperturbed embedding coor-

dinates ẑm and ˆ̄zm as required by (E.2).

As a final step, one inserts the explicit values for p, q and ω given in (2.19), to find

the combinations

3p − 15q + 2ω = −10ζ2m2R2

27
Z , 2p − 10q − 2ω =

10ζ2m2R2

81
Z . (E.9)

The final result hence reads

2∂a∂ā ˜̄zm =
ζ2m2

54
Ẑ

(

− 2

(

2 +
10

3

û2

r̂2

)

ˆ̄zm +

(

1 + 3
û2

r̂2

)

ẑm − 2
(ˆ̄zm)3

r̂2

)

, (E.10)

where the quantities that carry a ‘hat’ are related to or respectively evaluated with the

unperturbed part of the embedding.

The r.h.s. of (E.10) depends on ρ = 2zaz̄a via r̂2 = ρ2 + û2 only. It is therefore

reasonable to assume that also the embedding coordinates depend on ρ only. The Laplace

operator on the l.h.s. acts on a function f(ρ) as

2∂a∂āf = f ′′ + f ′ 3

ρ
=

1

ρ3
∂ρ

(

ρ3∂ρf
)

. (E.11)

Parameterizing the embedding coordinates in the complex basis as

√
2zm = u eiψ = (û + ũ) ei(ψ̂+ψ̃) = (û + ũ + iûψ̃) eiψ̂ ,

√
2z̄m = u e−iψ = (û + ũ) e−i(ψ̂+ψ̃) = (û + ũ − iûψ̃) e−iψ̂ ,

(E.12)

one finds the linear combinations

ẑm∂a∂ā ˜̄zm + ˆ̄zm∂a∂āz̃
m = û∂a∂āũ ,

ẑm∂a∂ā ˜̄zm − ˆ̄zm∂a∂āz̃
m = −iû2∂a∂āψ̃ .

(E.13)
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We therefore first multiply (E.10) by ẑm and use û2 = 2ẑm ˆ̄zm, ẑm

ˆ̄zm = e2iψ̂. This yields

2ẑm∂a∂ā ˜̄zm =
ζ2m2

108
Ẑû2

(

− 2

(

2 +
10

3

û2

r̂2

)

+

(

1 + 2
û2

r̂2

)

cos 2ψ̂ +

(

1 + 4
û2

r̂2

)

i sin 2ψ̂

)

.

(E.14)

Then we use the relations (E.13) and (E.11) to obtain

1

ρ3
∂ρ

(

ρ3∂ρũ
)

=
ζ2m2

54
Ẑû

(

− 2

(

2 +
10

3

û2

r̂2

)

+

(

1 + 2
û2

r̂2

)

cos 2ψ̂

)

,

1

ρ3
∂ρ

(

ρ3∂ρψ̃
)

= −ζ2m2

54
Ẑ

(

1 + 4
û2

r̂2

)

sin 2ψ̂ .

(E.15)

Collecting the terms with the same dependence on ρ, one immediately finds (4.28) with

the values (4.29) and (4.30).

F. Evaluation of the on-shell action

The explicit expression of the action up to order O(m2) follows from (4.6) or (4.26). After

transforming to polar coordinates with radius ρ it reads

S = −T7

eφ̂
Ω3

∫

dξ4 dρρ3

(

1 +
1

2
(∂ρũ)2 +

û2

2
(∂ρψ̃)2

+
ζ2m2

108
Ẑ

(

−
(

1

3
+ cos 2ψ̂

)

û2 +
5

3
r̂2

− 2

(

3 − 8

3

û2

r̂2

)

ûũ +
11

3
ûρ∂ρũ

− 2û

((

1 − 2
û2

r̂2

)

(1 − cos 2ψ̂)ũ + û sin 2ψ̂ ψ̃)

)

+ 2ûρ((1 − cos 2ψ̂)∂ρũ + û sin 2ψ̂∂ρψ̃)

)

.

(F.1)

We derive the action expressed in the new coordinate χ̂ = 1
r̂2 and restrict ourselves to the

embeddings with constant ψ. For these embeddings the inhomogeneity in the equation of

motion for ψ has to vanish. According to (4.30) this is the case for the choices ψ̂ = 0 or

ψ̂ = π
2 . The action then simplifies to

S = −T7

eφ̂
Ω3

∫

dξ4 dρρ3

(

1 +
1

2
(∂ρũ)2

+
ζ2m2

108
Ẑ

(

c0û
2 +

5

3
r̂2 − 2

(

c1 − c2
û2

r̂2

)

ûũ + c3ûρ∂ρũ

)

,

(F.2)

where the coefficients are explicitly given by

ψ̂ = 0 : c0 = −4

3
, c1 = 3 , c2 =

8

3
, c3 =

11

3
,

ψ̂ =
π

2
: c0 =

2

3
, c1 = 5 , c2 =

20

3
, c3 =

23

3
.

(F.3)
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We then evaluate it on the solution of the equation of motion. Including the measure from

the integration, in the coordinate χ̂ the kinetic term becomes with (4.37) and ρ2 = 1
χ̂
− û2

dρρ3(∂ρũ)2 = − dχ̂ρ42χ̂2(∂χ̂ũ)2 = −2 dχ̂(1 − χ̂u2)2(∂χ̂ũ)2 . (F.4)

Introducing χ̂ as independent coordinate, the action becomes

S =
T7

2 eφ̂
Ω3

∫

dξ4 dχ̂

(

1

χ̂3
− û2

χ̂2
+ 2(1 − χ̂û2)2(∂χ̂ũ)2

+
ζ2m2R4

108

1 − χ̂û2

χ̂

(

c0û
2 +

5

3χ̂
− 2û(c1 − c2χ̂û2)ũ

− 2c3û(1 − χ̂û2)χ̂∂χ̂ũ

))

.

(F.5)

Before evaluating it on the solution of the equations of motion, it is advantageous to

partially integrate some terms. The found result reads

S =
T7

2 eφ̂
Ω3

∫

dξ4

[
∫

dχ̂

(

1

χ̂3
− û2

χ̂2
− 2ũ∂χ̂((1 − χ̂û2)2∂χ̂ũ)

+
ζ2m2R4

108

1 − χ̂û2

χ̂

(

c0û
2 +

5

3χ̂

− 2û(c1 − (c2 − 2c3)χ̂û2)ũ

))

+ 2ũ(1 − χ̂û2)2
(

∂χ̂ũ − ζ2m2R4

108
c3û

)]

.

(F.6)

The equation of motion for ũ in the coordinate χ̂ reads

4∂χ̂((1 − χ̂û2)2∂χ̂ũ) = −ζ2m2R4

54
û

1 − χ̂û2

χ̂

(

c1 − (c2 − 2c3)χ̂û2
)

= −ζ2m2R4

54
û

(

c1

χ̂
− (c1 + c2 − 2c3)û

2 + (c2 − 2c3)χ̂û4

)

.

(F.7)

The explicit (regular) solution of the above equation that correspond to (4.34) with f = u,

but now given in χ̂ read

u = û + ũ = û − ζ2m2R4

216
û

((

c2

2
− c3

)

χ̂ + c1
χ̂

1 − χ̂û2
ln χ̂û2

)

. (F.8)

From the above result we read off the constants Bu and Cu given in (4.29) with ψ̂ = 0, π
2

in terms of c1, c2 and c3. They are given by

Bu = −ζ2m2R4

54
c1 , Cu =

ζ2m2R4

54
(c2 − 2c3) . (F.9)

Furthermore, the first derivative of the solution reads

(1 − χ̂û2)2∂χ̂ũ = −ζ2m2R4

216
û

(

c1 ln χ̂û2 +

(

c2

2
− c3

)

(1 − χ̂û2)2 + c1(1 − χ̂û2)

)

.

(F.10)
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To obtain it directly from the above differential equations, one has to add appropriate

integration constants. Using the equations of motion (F.7), the action becomes

S =
T7

2 eφ̂
Ω3

∫

dξ4

[
∫

dχ̂

(

1

χ̂3
− û2

χ̂2

+
ζ2m2R4

108

1 − χ̂û2

χ̂

(

c0û
2 +

5

3χ̂

− û(c1 − (c2 − 2c3)χ̂û2)ũ

))

+ 2ũ(1 − χ̂û2)2
(

∂χ̂ũ − ζ2m2R4

108
c3û

)]

.

(F.11)
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